DOI QR코드

DOI QR Code

용액연소법으로 제조한 LaFeO3의 XPS 특성

X-ray Photoelectron Spectroscopy Study of LaFeO3 Powders Synthesized by Solution Combustion

  • 황연 (서울산업대학교 신소재공학과, 친환경소재제품인력양성센터) ;
  • 강대식 (서울산업대학교 신소재공학과, 친환경소재제품인력양성센터) ;
  • 박미혜 (서울산업대학교 신소재공학과, 친환경소재제품인력양성센터) ;
  • 조성백 (한국지질자원연구원, 자원활용소재연구부)
  • Hwang, Yeon (Department of Materials Science & Engineering, Eco-Product & Materials Education Center, Seoul National University of Technology) ;
  • Kang, Dae-Sik (Department of Materials Science & Engineering, Eco-Product & Materials Education Center, Seoul National University of Technology) ;
  • Park, Mi-Hye (Department of Materials Science & Engineering, Eco-Product & Materials Education Center, Seoul National University of Technology) ;
  • Cho, Sung-Baek (Korea Institute of Geoscience & Mineral Resources, Minerals & Materials Processing Division)
  • 발행 : 2008.06.30

초록

[ $LaFeO_3$ ] powders were synthesized using a method involving solution combustion, and the surface properties of these powders were examined by x-ray photoelectron spectroscopy. As the amount of fuel increased during the synthesis, the $LaFeO_3$ powders became amorphous with a large plate-like shape. It was found that the O 1s spectra were composed of two types of photoelectrons by deconvolutioning the spectra. Photoelectrons with higher binding energy come from adsorbed oxygen ($O^-$) whereas those with lower energy come from lattice oxygen ($O^{2-}$). The ratio of adsorbed and lattice oxygen increased as the ratio of the fuel and nitrate (${\Phi}$) increased. The binding energy of both types of oxygen increased as ${\Phi}$ increased due to the formation of carbonates.

키워드

참고문헌

  1. Y. Teraoka, H. Fukuda and S. Kagawa, Chem. Lett., 19, 1 (1990) https://doi.org/10.1246/cl.1990.1
  2. T. Arakawa, H. Kurachi and J. Shiokawa, J. Mater. Sci., 20, 1207 (1985) https://doi.org/10.1007/BF01026315
  3. H. Zhang, Y. Teraoka and N. Yamazoe, Chem. Lett., 14, 665 (1985) https://doi.org/10.1246/cl.1985.665
  4. N. Russo, D. Fino, G. Saracco and V. Spechia, J. Catal., 229, 459 (2005) https://doi.org/10.1016/j.jcat.2004.11.025
  5. Y. Zhang-Steenwinkel, L. M. van der Zande, H. L. Castricum and G. D. Elzinga, Chem. Eng. Sci., 60, 797 (2005) https://doi.org/10.1016/j.ces.2004.09.042
  6. M. Sadakane, T. Asanuma, J. Kubo and W. Ueda, Chem. Mater, 17, 3546 (2005) https://doi.org/10.1021/cm050551u
  7. D. Fino, P. Fino, G. Saracco and V. Specchia, Chem. Eng. Sci., 58, 951 (2003) https://doi.org/10.1016/S0009-2509(02)00633-4
  8. M.A. Hasan, M.I. Zaki, K. Kumari and L. Pasupulety, Thermochimica Acta, 320, 26 (1998) https://doi.org/10.1016/S0040-6031(98)00425-0
  9. K. Deshpande, A. Mukasyan and A. Varma, Chem. Mater., 16, 4896 (2004) https://doi.org/10.1021/cm040061m
  10. S. Specchia, A. Civera and G. Saracco, Chem. Eng. Sci., 59, 5091 (2004) https://doi.org/10.1016/j.ces.2004.08.028
  11. D. S. Kang, T. K. Lee, Y. Hwang, K. H. Bae and S. B. Cho, Kor. J. Mater. Res., 17, 382 (2007) https://doi.org/10.3740/MRSK.2007.17.7.382
  12. T. L. Barr, J. Phy. Chem., 82, 1801 (1978) https://doi.org/10.1021/j100505a006
  13. J. F. Moulder, W. F. Stickle and P. E. Sobol, Handbook of X-ray Photoelectron Spectroscopy, Perking-Elmer Corporation, Physical Electronics Division, 1993
  14. D. Briggs and M. P. Seah Ed., Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Wiley, (1983)
  15. B. M. Reddy, P. M. Sreekanth, E. P. Reddy, Y. Yamada, Q. Xu, H. Sakurai and T. Kobayashi, J. Phys. Chem. B, 106, 5695 (2002) https://doi.org/10.1021/jp014487p
  16. T. Seiyama, in Surface and Near-Surface chemistry of Oxide Materials, ed. J. No wotny and L. -C. Dufour, Elsevier, Amsterdam, (1988)
  17. T. Seiyama, N. Yamazoe, K. Eguchi, Ind. Eng. Chem. Prod. Res. Dev., 24, 19 (1985) https://doi.org/10.1021/i300017a005
  18. P. Ciambelli, S. Cimino, S. De Rossi, M. Faticanti, L. Lisi, G. Minelli,I. Petitti, P. Porta, G. Russo, abd M. Turco, Appl. Catal., B24, 243 (2000) https://doi.org/10.1016/S0926-3373(99)00110-1
  19. T. Seyama, Catal. Rev.-Sci. Eng., 34, 281 (1992) https://doi.org/10.1080/01614949208016313
  20. N. Yamazoe, Y. Teraoka, T. Seiyama, Chem. Lett., 10, 1767 (1981) https://doi.org/10.1246/cl.1981.1767
  21. D. Fino, N. Russo, G. Saracco and V. Specchia, J. Catal., 217, 367 (2003) https://doi.org/10.1016/S0021-9517(03)00143-X
  22. S. Ponce, M. A. Pena and J. L. G. Fierro, Appl. Catal. B: Environ., 24, 193 (2000) https://doi.org/10.1016/S0926-3373(99)00111-3