토양선충 Caenorhabditis elegans의 스트레스 관련 유전자 발현을 이용한 시간에 다른 카드뮴의 독성영향

Time-dependent Toxic Effects of Cadmium Chloride on the Stress-related Gene Expression, Growth and Reproduction of the Soil Nematode Caenorhabditis elegans

  • 노지연 (서울시립대학교 환경공학부 독성학연구실) ;
  • 이정경 (서울시립대학교 환경공학부 독성학연구실) ;
  • 권혁두 (서울시립대학교 환경공학부 독성학연구실) ;
  • 최진희 (서울시립대학교 환경공학부 독성학연구실)
  • Roh, Ji-Yeon (Faculty of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Lee, Jeong-Gyeong (Faculty of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Kwon, Hyuk-Cu (Faculty of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Choi, Jin-Hee (Faculty of Environmental Engineering, College of Urban Science, University of Seoul)
  • 발행 : 2008.03.31

초록

카드뮴은 환경과 인체 위해도에 큰 영향을 미치는 중요한 환경오염물질로 잘 알려져 있다. 본 연구에서는 토양선충인 Caenorhabditis elegans에 카드뮴을 12시간과 48시간으로 나누어 처리하여 시간에 따른 장, 단기적 독성영향을 알아보고자 하였다. 이때 생리학적 수준으로 성장 및 생식을 조사하고, 분자수준에서 스트레스 관련 유전자들의 시간에 따른 발현 정도를 관찰하였다. 생식에서는 단기노출(12시간) 시 그 영향이 대조군에 비해 크게 나타났으며, mtl-2의 스트레스 관련 유전자가 증가하였다 장기 노출(48시간) 시에는 cyp35a2, ape-1, sod-1, ctl-2 유전자가 대조군에 비해 약 $2{\sim}4$배 가량의 발현 증가 결과를 조사할 수 있었다. 본 연구결과들을 통해 스트레스 관련 유전자의 발현을 조사하는 것이 중요하고 민감한 생체지표가 된다는 것과 토양선충 C. elegans는 환경중 오염물질에 대한 장기, 단기적 영향을 평가하기 위한 좋은 생물학적 모델이 된다는 것을 알 수 있었다.

키워드

참고문헌

  1. Anderson GL, Boyd WA and Williams PL. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans, Environ Toxicol Chem 2001; 20: 833-838 https://doi.org/10.1897/1551-5028(2001)020<0833:AOSEFT>2.0.CO;2
  2. Aruoja V, Kurvet I, Dubourguier HC and Kahru A. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay, Environ Toxicol 2004; 19: 296-402 https://doi.org/10.1002/tox.20037
  3. ATSDR. Toxicologic Profile for Cadmium, Agency for Toxic Substances and Disease Registry. Atlanta, GA. 2003
  4. Boyd WA and Williams PL. Availability of metals to the nematode Caenorhabditis elegans: Toxicity based on total concentrations in soil and extracted fractions, Environ Toxicol Chem 2003; 22: 1100-1106 https://doi.org/10.1897/1551-5028(2003)022<1100:AOMTTN>2.0.CO;2
  5. Brenner S. The genetics of Caenorhabditis elegans, Genetics 1974; 77: 71-94
  6. Cui Y, McBride SJ, Boyd WA, Alper S and Freedman JH. March 2008 Roh et al. : Time-dependent Toxic Effects of Cadmium 15 Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity, Genome Biol 2007; 8: R122 https://doi.org/10.1186/gb-2007-8-6-r122
  7. Dong J, Boyd WA and Freedman JH. Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6, J Mol Biol 2008; 376: 621-633 https://doi.org/10.1016/j.jmb.2007.11.094
  8. Donkin SG and Williams PL. Influence of developmental stage, salts and food presence on various and points using Caenorhabditisl elegans for aquatic toxicity testing, Environ Toxico Chem 1995; 14: 2139-2147 https://doi.org/10.1897/1552-8618(1995)14[2139:IODSSA]2.0.CO;2
  9. Guan R and Wang WX. Dietary assimilation and elimination of Cd, Se, and Zn by Daphnia magna at different metal concentrations, Environ Toxicol Chem 2004; 23: 2689-2698 https://doi.org/10.1897/03-503
  10. Jones SJ, Riddle DL, Pouzyrev AT, Velculescu VE, Hillier L, Eddy SR, Stricklin SL, Baillie DL, Waterston R and Marra MA. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans, Genome Res 2001; 11: 1346-1352 https://doi.org/10.1101/gr.184401
  11. Kohra S, Kuwahara K, Takao Y, Ishibashi Y, Lee HC, Arizono K and Tominaga N. Effect of bisphenol A on the feeding behavior of Caenorhabditis elegans, J Health Sci 2002; 48: 93-95 https://doi.org/10.1248/jhs.48.93
  12. Lock K and Janssen CR. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account, Ecotoxicology 2001; 10: 315-322 https://doi.org/10.1023/A:1016767519556
  13. Martelli A, Rousselet E, Dycke C, Bouron A and Moulis JM. Cadmium toxicity in animal cells by interference with essential metals, Biochimie 2006; 88: 1807-1814 https://doi.org/10.1016/j.biochi.2006.05.013
  14. Menzel R, Rodel M, Kulas J and Steinberg CE. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans, Arch Biochem Biophys 2005; 438: 93-102 https://doi.org/10.1016/j.abb.2005.03.020
  15. Ominaga N, Kohra S, Iguchi T and Arizono K. A Multi-Generation sublethal assay of phenols using the nematode Caenorhabditis elegans, J Health Sci 2003; 49: 459-463 https://doi.org/10.1248/jhs.49.459
  16. Roesijadi G. Metallothionein induction as a measure of response to metal exposure in aquatic animal, Environ Health Perspect 1994; 12: 91-95
  17. Roh JY, Lee J and Choi J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metalinduced toxicity monitoring and environmental risk assessment, Environ Toxicol Chem 2006; 25: 2946-2956 https://doi.org/10.1897/05-676R.1
  18. Tominaga N, Kohra S, Iguchi T and Arizono K. A multigeneration sublethal assay of phenols using the nematode Caenorhabditis elegans, J Health Sci 2003; 49: 459-463 https://doi.org/10.1248/jhs.49.459
  19. Waalkes MP, Cadmium carcinogenesis in review, J Inorg Chem 2000; 79: 241-244
  20. Waalkes MP, Coogan TP and Barter RA. Toxicological principles of metal carcinogenesis with special emphasis on cadmium, Crit Rev Toxicol 1992; 22: 175-201 https://doi.org/10.3109/10408449209145323
  21. Williams PL and Dusenbery DB. Aquatic toxicity testing using the nematode Caenorhabditis elegans, Environ Toxicol Chem 1990; 9: 1285-1290 https://doi.org/10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2
  22. Yoshimi T, Minowa K, Karouna-Renier NK, Watanabe C, Sugaya Y and Miura T. Activation of stress-induced gene by insecticides in the midge, Chironomus yoshimatsui, J Biochem Mol Toxicol 2002; 16: 10-17 https://doi.org/10.1002/jbt.10018