Abstract
In order to improve on the divergence by noise convariance in the Kalman filter position estimation, we propose a method of position estimating through compensating the autonomous mobile robot's noise. Proposed method is the modified Kalman filter using neural network. It is prevented the divergence by the estimation of measurement noise covariance and system noise covariance. In order to verify the effectiveness of the proposed method, we performed simulations and experiments for position estimation. The results show that convergence and position error is reduced than the Kalman filter method.
본 논문에서는 칼만 필터 위치 추정 방식에서 노이즈 공분산에 의해 발산이 되는 문제점을 개선하기 위해 바퀴로 구성된 자율이동 로봇에 노이즈를 고려한 위치추정 방식을 제안하였다. 제안한 방식은 신경회로망을 이용한 변형된 칼만 필터 설계 방식으로, 신경회로망을 이용하여 시스템 노이즈와 측정노이즈의 공분산을 추정함으로서 발산을 방지하는 것이다. 제안한 방식의 유용성을 자체 제작한 자율이동 로봇을 대상으로 시뮬레이션 및 실험을 통하여 칼만 필터 위치 추정 방식 보다 우수함을 확인하였다.