ot
Hi
A
or
Rl
|>
n&
Lo
Tob
ri
£l

X| 2008, Vol. 18, No. 2, pp. 272-277

Symmerge 212l &e SHET

Complexity of the Symmerge Algorithm

2=y
Pok-Son Kim
=0l &t Xjod nfstol sF =5t 1}
e of

stable minimum storage M7 FmeFolt adEz MmAFst UYWAY F2H A Qmleg—)ol o3
=

= u
Symmerge ¢33 =L HA o7 3ds & 9 Y Symmerger F YBEFEe EF (partition)d} = Ho] A
(rotation) & T3 FAAET F£EE €ndF9 AAA 2 (recursive call)o] 8% divide 2 conquer 7]Ee o] -8t
o} ol2 3| FEEo| MEIHAN Y 2 HET] 23 AAL Zdol7t m—1 7} HE A5 UM 7 dE€a4¢
o] dolo] AAE dolr 1z} Fhri,

A E stable HA, dugE B

Abstract

Symmerge i1s a stable minimum storage merging algorithm that needs O(mlog%) element comparisons, where m and

n are the sizes of the input sequences with m <n. Hence, according to the lower bound for merging, the algorithm is
asymptotically optimal regarding the number of comparisons. The Symmerge algorithm is based on the standard
recursive technique of "divide and conquer”. The objective of this paper is to consider the relationship between m
and n for the degenerated case where the recursion depth reaches m—1.

Key Words : stable merging, algorithm complexity

1. A B because every element may change its position in the
sorted result. The lower bound for the number of com-

Merging [4,5] denotf?s the operation of rearranging parisons is 2(mlog ﬁ) for m < n. This can be proven
the elements of two adjacent sorted sequences of sizes . _ _m _ . .
m and ,, so that the result forms one sorted sequence by a combinatorial inspection combined with an argu-

mentation using decision trees. An accurate presentation
of these bounds is given by Knuth [1].
N . . , - A minimum storage merging algorithm was proposed
?[.(log™(m +n))bits afdltlonal jlfaczdatf most. ??18 f?‘m by Dudzinski and Dydek [2] in 1981. They presented a
© mergmg represents a weaxen orm 0 .m place divide and conquer algorithm that i1s asymptotically op—
merging and allows the usage of a stack that is loga- : . : _
thrmicallv hounded i . Ming : timal regarding the number of comparisons but non
Tl 5 t'y unl cd n fm edn't rumgm gtorage rqergmi linear regarding the number of assignments. In 2004
15 SOMEUMES also Terert 0 as In Sm.l METgIng. Kim and Kutzner [3] also presented a new stable mini-
merging algorithm is regarded as stable, if it preserves : : :
S . . mum storage merging algorithm performing
the initial ordering of elements with equal value.Some n
lower bounds for merging have been proven so far. The O(mlog E) comparisons and O((m +n)logm) assign-
lower bound for the number of assignments i1s m +n,

of m+n elements. An algorithm merges two adjacent
sequences with minimum storage when it needs

ments for two sequences of size m and n m < n. This
algorithm 1s based on a simple strategy of symmetric
ekt : 20074 109 15 comparisons, which will be ex.plained in detail by an
etz X} - 2008 1€ 30¥ example. In complexity-analysis we realized that the
algorithm may reach the recursion level m —1., The ob-
jective of this paper 1s to consider the relationship be-

This work was supported by the Kookmin University
research grant in 2007

272

tween m and n for the degenerated case where the re-
cursion depth reaches m —1.

2. The Symmerge Algorithm

We start with a brief introduction of the Symmerge
algorithm [3]. Let us assume that we have to merge the
two sequences u=(0,2,59) and v=(1,4,78).

u E T
I

e i an e e o i

=
L
FRUNRR S p
-
L e
\
ot
I B
| e ——
JUURE B B
SURPRVSIRE B ¥ 4

ke e

Recursion 1 Recursion 2

Fig. 1. Symmerge example

When we compare the input with the sorted result,
we can see that in the result the last two elements of u
occur on positions belonging to », and the first two ele-
ments of v appear on positions belonging to « (see Fig.
1). So, 2 elements should be exchanged between u and
v. The kernel of the algorithm is to compute this num-
ber of side-changing elements efficiently and then to
exchange such a number of elements. This number can
be determined by a process of symmetrical comparisons
of elements that happens according to the following
principle:We start at the leftmost element in « and at

Symmerge €12|&2 HEE

the rnghtmost element in Y and compare the elements

at these positions. We continue doing so by symmetri-
cally comparing element—pairs from the outsides to the
middle. Fig. 1 shows the resulting pattern of mutual
comparisons for the example. There can occur at most
one position, where the relation between the compared
elements alters from 'not greater’ to 'greater’. In
Figure 1 two thick lines mark this position. These thick
lines determine the number of side—changing elements
as well as the bounds for the rotation. Then by re-
cursive application of this technique to the arising sub-
sequences we get a sorted result. Due to this technique
of svmmetric comparisons the algorithm has been
called Symmerge.So far we introduced the computation
of the number of side-changing elements as linear
process of symmetric comparisons. But this computation
may also happen in the style of a binary search. Then
only llog{(min(lul,lvl))41 comparisons are necessary to
compute the number of side—changing elements.

The input lengths |ul and [v| of the above example are
equal. However, if the lengths of v and v are differen},
for example © < v, we decompose the longer sequence
p Into three parts v;wv, so that the middle part w has

the same size as the shorter sequence u. Applving the
technique of symmetric comparisons described above to
v and w, the bounds for the rotation are determined.

2.1 Formal Definition

et v and v be two adjacent ascending sorted
sequences. We define u<v (u<v) iff. z <y (z<y)
for all elements z€wu and for all elements y=v. We
merge u and v as follows!If |ul < [v], then(al) we de-
compose v into wv,wwv, such that hwl=lul and either
vl = vyl or v, =lv,|+1.(a2) we decompose u into uyu,
(he; > 0,lu,) > 0) and w into wyw, (lu; = 0,lul > 0)
such that | =lw,l, lu,)=lw, and u; < w,, u, >w,.(a3)
we recursively merge u; with v,w; as well as u, with
wyvy. Let u' and v be the resulting sequences,
respectively.

else

(b1) we decompose u into wu,wu, such that hwl=|ul
and either |u,| = lu,| or luy = lu;/+1.(b2) we decompose v
into v, (vl =>0wyl>0) and ,, into wyw,
(hwyl = 0,hw,l = 0) such that |,|=lw,), l=hw,| and
w, < vy, wy > v.(b3) we recursively merge u,w, with v,
as well as wou, with v,. Let u' and v" be the resulting

sequences, respectively.

u'v" then contains all elements of v and v in sorted
order.

273

rok
Hl
Ral
o|r
Rl
|>

m

ok
fob

=2%| 2008, Vol. 18, No, 2

Decomposition of v

(al) u

|u| < |y Svmmetric decomposition of v and w

(52)) 9] "‘!]. Wy)

Recursion 1 Recursion 2

"o
(]
A

uj vpow) | ou war 12

e camar MR AMin Sdls ol s MR RN MU SWAM WS SOV aeoegr agered TOIme s DNe sl Sl el TR SATL oD MOEM MMM MAMA seme Seeee weesl smeen rgs

Decomposition of u

(b1)]

u| > |v] Symmetric decomposition of v and w
(b2)] @1 | wr fuws| wy | v}
Recursion 1 Recursion 2
(b3} | u] wy vy Wy Uy o

Fig. 2. lllustration of Symmerge

Fig. 2. contains an accompanying graphical descrip-
tion of the process described above. The steps (al) and
(bl) manage the situation of input sequences of differ-
ent length by cutting a subsection w in the middle of
the longer sequence as ‘‘active area’’. This active area
has the same size as the shorter of either input
sequences. The decomposition formulated by the steps
(a2) and (b2) can be achieved efficiently by applying
the principle of the symmetric comparisons between the
shorter sequence u (or v) and the active area w. After
the decomposition step (a2) (or (b2)), the subsequence
usv,w1(0r wsyuyvy) is rotated so that we get the sub-se-~
quences wv,w, and ujwav{u,w v, and wyusvy). The
treatment of pairs of equal elements as part of the
“outer blocks’’ (u;w, in (a2) and wy,v, in (b2)) avoids

the exchange of equal elements and so any reordering
of these.

274

It is obvious that Symmerge is stable because of the
decomposition condition u; < w,, u, >w, (or w; < v,

wy > V).

3. Complexity

3.1 Worst Case Complexity

Unless stated otherwise, let us denote m = lul, n =1,

m <n k=|ogm|. Further let mj and n; denote the

minimum and maximum of lengths of sequences merg-
ing on the ith recursion group for +=0,1,2,--- ,k and
j=1,2,-,2" (initially m? =m and n‘f =n). A recursion
group consists of one or several recursion levels and
comprises 2'(i=0,1,--- ,k) subsequence mergings at
most (see figure 3). In the special case where each
subsequence merging always triggers two nonempty
recursive calls - in this case the recursion depth be-
comes exactly k=logm| -, recursive groups and re-
cursive levels are identical, but in general for the re-
cursion depth dp it holds k=logml|< dp < m. Further,
for each recursion group 1=0,1,2,---,k it holds
5

;;(m; +nj) <
Symmerge regarding the number of comparisons and
assignments are given in [3] as follows:

m-+n. The worst case complexity of

2£
Lemma 1. If k= ij for any k:j > () and integer i = 0,
j=1

then E logk,; < 2'log (k/2°).
j=1
Proof. We show the lemma through induction on

i.Induction base: If i =1, the followings hold:

2
E = logk, + log k,
| k | k, +k,

0g7 = log—

Since log—function is concave,

2 k, +k, 2 L
lZ}logk:, < log(———=) Thus Y logk. < 2log(=)
2 o 2 P 2

Induction step: Assuming that the result holds for ¢,
we can confirm 1its validity for :+1 as follows:

k= ZA—Zk+ E k,
=1 j=2+1

i+ 1

2

LetheZk: and let 7, be D k;

i= 2 +1

Then

)H—l e‘+1

Zlogk .-.-nga, + Z logk,

J=1 j=2'+1

T 75

< 2'log ——2714- 2'log —-2—;— by our inductive assumption. By

applying our inductive assumption once more, we obtain

the result.
21‘+1 . T T
log l.:jé 2" (10g -—:+ log 2)
= 2! 2!
17+ T,
%. 2 .,; k []
< 2' (2log 9) =2"""1og it 1
_ 0 . _ .0
m(=mj) recursion group { n(=nj)
/N /N
1(= mb m— 1(= m%) recursion group 1?2% n:l_g
1 m-2 ?2% n%

I m-—3 n3 nﬁ
********* /"\“*""””""""“'“"”“*"""“/**""
1 m — 4 n‘% ’n%
7\ "\
I m-—A5 n% nﬁ
/ \ recursion group 3 / \
I m—6 n% 'n,%
________ Loom=T i
/ \ recursion group A / \
I m—(m— 1) -né};_l nffk

Fig. 3. Construction of recursion groups

Theorem 1. ([3] Theorem 1) The Symmerge algorithm
needs O(mlog ;Z—) comparisons.

proof. The number of comparisons for the binary search
for recursion group 0 is equal to

logm|+1 < logm +nl+1.
For the recursion group 1 we need at most
log(m}%—n.})+1-|—10g(m%+né)+1

comparisons, and so on. For the recursion group ¢ we

o7
&

need at most Zlog(mj—knj) + 2" comparisons. Since
=1

3 (m+nl) =m+n,
i=1
it holds

D log(mi+ni) +2' < 2'log((m+n)/2") +2!
j=1

Symmerge 2112|559 2T

by Lemma 1. So the overall number of comparisons for
all k+1 recursion groups 1s not greater than

k
Z(Qi +2'log ((m+mn)/2")) =2kt —1
i=0

k
+ (2" —1)log(m+n) — Z@T
i=0

K
Since Y,i2' =(k—1)2"1+2, algorithm Symmerge
i=0

needs at most
1+ (2" —1D)log(m+n)—(k—1)28F —2
=2 og(m+n)— k2" +252 —log(m+n) -3
=2m(log(m+n)— logm +2)— log{m+n)—3

m+n

=2m(log +2)— log(m+n)—3

T

= O(mlog(—+1))

T

comparisons.

]

Theorem 2. ([3] Theorem 3) If we take the rotation al-
gorithm given in [2], then Symmerge requires
O((m+n)logm) element assignments.

proof. Inside each recursion group ¢=0,1,--- .k dis—
joint parts of v are merged with disjoint parts of w.
Hence each recursion group ¢ comprises af most

o
=

Z ((m; —I—fn,;) + ged (m;,n;))

j=1

2!
< m+n-|—2m}
J=1
=2m+n

assignments resulted from rotations. So the overall
number of assignments for all k recursion groups 1is
less than

(2m+n)(k+1)=(2m+n)logm+2m+n
= O((m+n)logm).

mand ”

So far we grouped recursion levels so that each re-
cursion group consists of one or several recursion levels

3.2 Relation of the Input-Sizes

and comprises 2°(i =0,1,--- ,llogml!) subsequence merg-
ings at most. We resolve them again. So, let mé- and nj
denote sizes of sequences merged on the ith recursion
level (:1=0,1,2,--- ,;m—1). Initially m] =m and n® =n.
Now we consider the relationship between m and n for
the degenerated case where the recursion depth reaches
m—1, where each (m;,'n;) 1s partitioned to (1,?11“)

and (mi—1 (=m’""),ny"") as shown in Fig 4.

275

st X sA AR EHS| =&X| 2008, Vol. 18, No. 2

mi= ‘m?] recursion level 0 ni= n?)
Z\ 7\

1 m%j m— l{= %) recursion level 1 n% n%

m— 9 recursion level 2 n? nd
recursion level 3 n:% n‘%

1 4

nq ny
1 ny n3

A\ A\

1 m—{m—1)recursion level m — 1 71 ns
Fig. 4. Degenerated case with m —1 recursion depth

Theorem 3. If Symmerge algorithm reaches the re-
cursion depth m —1 for two input sequences of sizes m

and n (m <n), then n>2""1(m+2)—

Proof. At the beginning the longer sequence v of size n
1s decomposed into three parts so that the middle part
has the same size as the shorter sequence v of size m.
Afterwards the technique of symmetric comparisons is

applied. As result m and n are partitioned to (m},n])

and {mg,n,) where it holds m] =1,

my =m—1,

1 n—1m
?’Ll = 2

+m—1 and

To reach the next recursion level, it must be satisfied
that

Suppose that, just as on the first recursion level,
(m—1(=mj), = —+1(=n}))

is again partitioned to (1,n}) and (m—2,n;) on the

second recursion level. Then
n_zm+1—(m—1)
m-—2 < nj= 5 +1
_ n—m+2—2(m—1)+2°
22

1 1
=12 (m—1i)+ Y 2iM) /22
i=0 i=0

On the kth recursion level, suppose

276

(m—(k—1)(=

is partitioned to (1,n"f) and (m—k,ng),
'n,é,":(n-m+2—2(m—1)+22-22(m—2)
4284 2K (g — (k—1)) +2%)/2"

k=1 k—1
=(n—Y,2'(m—i)+ ;27" /2"

i=0 i=0

In order to reach the next recursion level k+1, it

g_l)ang_l)

where

must be satisfied that m—k < nf;, and so on. Hence, to
reach the recursion depth m —1, we need the assump-
tion m—(m—1) <n?~' where

ny '=(n-m+2-2(m—1)+2°

—2*(m—2)+2—- =27 m—(i—1))

+2 — =9 2 —(m—2)) +2™ 1) /2m !

m—2 m—2
_ ZQi(m“i) + 22i+1)/2m—1
i=0 i=0

m—2 m—2
=(n—(m—2)(Y,2")+ Yi2")/2"" . Therefore
1 ={) =1
ol < n—(m—=2)(2" —1)+2"" Y (m—3) +2
=n—2""Ym+1)+m)

Hence 2" Hm+2)—m <n

4. Conclusion

The Symmerge algorithm is a simply structured sta-
ble merging algorithm. It merges two sorted sequences
on the foundation of a divide and conquer strategy. In
[3] it was already proved that Symmerge is asymptoti-
cally optimal regarding the number of comparisons,
where the corresponding proof relies on the construction
of recursion groups as central technique. In the context
of this proof the inequality given in Theorem 3 is of
significant importance. Here we proved the correctness
of this inequality in full detail as completion of the
work presented in [3].

> | |
2107

o

[1] D. E. Knuth, “The Art of Computer
Programming,” Addison-Wesley, Vol. 3: Sorting
and Searching, 1973.

[2] K. Dudzinski and A. Dydek, “On a Stable
Storage Merging Algorithm,” Information
Processing Letters, Vol. 12, No. 1, pp. 58,
1981.

[3] P. S. Kim and A. Kutzner, “Stable Minimum
Storage Merging by Symmetric Comparisons,” In
Albers, S., Radzik, T. (eds.), Algorithms-ESA
2004, Springer, Lecture Notes in Computer
Science 3221, pp. 714-723, 2004.

[4] L. T. Pardo. “Stable sorting and merging with
optimal space and time bounds,” SIAM Journal
on Computing, 6(2):351-372, June 1977.

[5] J. Salowe and W. Steiger. “Simplified stable
merging tasks,” Journal of Algorithms,
8:557-571, 1987.

A XA 7

Pok-Son Kim (&S 4)

She has been assistant professor of
Department of Mathematics, Kookmin
University, Seoul, Korea.

- Her research interests are complexity
theory, merging and sorting algorithms
as well as scheduling problems.

Phone +82-2-910-4747
Fax D +82-2-910-4739
E-mail : pskim@kookmin.ac.kr

Symmerge

