DOI QR코드

DOI QR Code

2단계 반응에 의한 마그네타이트 나노입자의 제조

Preparation of Magnetite Nanoparticles by Two Step Reaction

  • 신대규 (요업(세라믹)기술원 나노소재팀) ;
  • 류도형 (요업(세라믹)기술원 나노소재팀)
  • Shin, Dae-Kyu (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Riu, Doh-Hyung (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology))
  • 발행 : 2008.04.28

초록

Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

키워드

참고문헌

  1. M. Klokkenburg, C. Vonk, E. M. Cleaesson, J. D. Meeldijk, B. H. Erne and A. P. Philipse: J. Am. Chem. Soc., 126 (2004) 16706 https://doi.org/10.1021/ja0456252
  2. S. Sun and H. Zeng: J. Am. Chem. Soc., 124 (2002) 8204 https://doi.org/10.1021/ja026501x
  3. F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu and D. B. Shieh: Biomaterials, 26 (2005) 729 https://doi.org/10.1016/j.biomaterials.2004.03.016
  4. Y.-K. Sun, M. Ma, Y. Zhang and N. Gu: Colloids and surface A: Physicochem. Eng. Aspects, 245 (2004) 15 https://doi.org/10.1016/j.colsurfa.2004.05.009
  5. R. Vijayakumar, Y. Koltypin, I. Felner and A. Geganken: Mater. Sci Eng A, 286 (2000) 101 https://doi.org/10.1016/S0921-5093(00)00647-X
  6. Y. S. Kang, S. Risbud, J. F. Rabolt and P. Stroeve: Chem Mater., 8 (1996) 2209 https://doi.org/10.1021/cm960157j
  7. D.-K. Kim, Y. Zhang, W. Voit, K. V. Rao and M. Muhanned: J. Magn. Magn. Mater., 225 (2001) 30 https://doi.org/10.1016/S0304-8853(00)01224-5
  8. T. Tago, T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro and K. Wakabayashi: J. Am. Ceram. Soc., 85 (2002) 2188 https://doi.org/10.1111/j.1151-2916.2002.tb00433.x
  9. T. H. Hyeon: Chem. Commun., (2003) 927
  10. U. Schwertann and R. M. Cornell: The Iron Oxides in the Laboratory, Second, Completely Revised and Extended Edition, Willey-VCH, (2000) 60
  11. R. Carlos, F. Thomas, Z. Markus and C. Tahir: Magnetic nanoparticles in fluid suspension : Ferrofluid applications, in Dekker Encyclopedia of Nanoscience and Nanotechnology, Vol. 3, (2004) 1731 https://doi.org/10.1081/E-ENN-120009317
  12. U. Schwertann and R. M. Cornell: The Iron Oxides in the Laboratory, Second, Completely Revised and Extended Edition, Willey-VCH, (2000) 60-610
  13. Matsuda and I. Kayama: J. Chem. Soc. Jpn., 1 (1983) 29
  14. Y. K. Jeong, D. K. Shin, H. J. Lee, K. S. Oh, J. H. Lee and D. H. Riu: Key. Eng. Mat., 317-318 (2006) 203 https://doi.org/10.4028/www.scientific.net/KEM.317-318.203