DOI QR코드

DOI QR Code

TiO2 나노분말과 수산화알칼리와의 반응으로부터 티탄산 나노튜브의 형성과 나노구조의 전개

Titanate Nanotube Formation and Nanostructure Development from the Reaction of TiO2 Nanopowder and Alkalihydroxide

  • 진은주 (요업(세라믹)기술원 나노소재팀) ;
  • 류도형 (요업(세라믹)기술원 나노소재팀) ;
  • 허승헌 (요업(세라믹)기술원 나노소재팀) ;
  • 김창열 (요업(세라믹)기술원 나노소재팀) ;
  • 황해진 (인하대학교 신소재공학과)
  • Jin, Eun-Ju (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Riu, Doh-Hyung (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Huh, Seung-Hun (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Kim, Chang-Yeoul (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Hwang, Hae-Jin (Materials Science & Engineering, Inha University)
  • 발행 : 2008.04.28

초록

[ $TiO_2$ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. $TiO_2$ nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. $TiO_2$ nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at $110^{\circ}C$ for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. $TiO_2$ nanotube was also obtained when the precursor was washed with other washing solutions such as $NH_4OH$, NaCl, $K_2SO_4$, and $Na_2SO_3$. Therefore, it was suggested that $Na^+$ ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of $TiO_2$ compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.

키워드

참고문헌

  1. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Adv. Mater., 11 (1999) 1307 https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  2. T. Kasuga, M. Hiramatsu, A, Hoson, T. Sekino and K. Niihara: Langmuir, 14 (1998) 3160 https://doi.org/10.1021/la9713816
  3. M. Kaneko and I. Okura: Photocatalysis Science and Technology, Kodansha & Springer, Japan, (2002) 33
  4. A. Fujishima and K. Honda: Nature, 238 (1972) 37 https://doi.org/10.1038/238037a0
  5. T. Hirosi: Story of intelligible photocatalyst, Chonnam national university press, (2004) 12
  6. M. Wei, Y. Konishi, H. Zhou, H. Sugihara and H. Arakawa: Solid State Commun., 133 (2005) 493 https://doi.org/10.1016/j.ssc.2004.12.026
  7. T. Kasuga, M. Hiramatsu, M. Hirano and A. Hoson: J. Mater. Res., 12 (1997) 607 https://doi.org/10.1557/JMR.1997.0090
  8. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang: Appl. Phys. Lett., 82 (2003) 281 https://doi.org/10.1063/1.1537518
  9. H. K. Shin and H. Kim: J. Kor. Ass. Cryst. Growth, 9 (1999) 493 (Korean)
  10. D. S. Seo, J. K Lee and H. Kim: J. Cryst. Growth, 229 (2001) 428 https://doi.org/10.1016/S0022-0248(01)01196-4
  11. T. Kasuga: Thin Solid Films, 496 (2006) 141 https://doi.org/10.1016/j.tsf.2005.08.341
  12. X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu and W. F. Shangguan: Solid State Commun., 136 (2005) 513 https://doi.org/10.1016/j.ssc.2005.09.023
  13. D. V. Bavykin, V. N. Parmon, A. A. Lapkin and F. C. Walsh: J. Mater. Chem., 14 (2004) 3370 https://doi.org/10.1039/b406378c
  14. Y. Q. Wang, G. O. Hu, X. F. Duan, H. L. Sun and Q. K. Xue: Chem. Phys. Lett., 365 (2002) 427 https://doi.org/10.1016/S0009-2614(02)01502-6
  15. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang and Z. Zhang: J. Mol. Catal. A-Chem., 217 (2004) 203 https://doi.org/10.1016/j.molcata.2004.03.032
  16. Y. F. Chen, C. Y. Lee, M. Y. Yeng and H. T. Chiu: Mater. Chem. Phys., 81 (2003) 39 https://doi.org/10.1016/S0254-0584(03)00100-7
  17. D. S. Suh, J. K. Lee and W. Kim: J. Kor. Ceram. Soc., 37 (2000) 700 (Korean)
  18. S. Zhang, L.-M. Peng, Q. Chen, G. H. Du, G. Dawson and W. Z. Zhou: Phys. Rev. Lett., 91 (2003) 256