Characterization of a Bifunctional HPr Kinase/Phosphorylase from Leuconostoc mesenteroides SY1

  • Park, Jae-Yong (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lee, Kang-Wook (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Lee, Ae-Ran (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Jeong, Woo-Ju (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University) ;
  • Lee, Jong-Hoon (Department of Foods and Biotechnology, Kyunggi University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
  • Published : 2008.04.30

Abstract

The hprK gene encoding bifunctional HPrK/P (kinase/phosphorylase) was cloned from L. mesenteroides SY1, a strain isolated from kimchi. hprK was transcribed as a monocistronic gene. His-tagged HPrH16A and HPrK/P were produced in E. coli BL21 (DE3) using pET26b(+) and purified. HPrK/P phosphorylation assay with purified proteins showed that the kinase activity of HPrK/P increased at slightly acidic pHs. Divalent cations such as $Mg^{2+}$ and $Mn^{2+}$ and glycolytic intermediates such as fructose-1, 6-bisphosphate (FBP) and phosphoenolpyruvate (PEP) increased the kinase activity of HPrK/P, but inorganic phosphate strongly inhibited it. Kinetic studies for the kinase activity of HPrK/P showed that the apparent $K_m$ values were 0.18 and $14.57{\mu}M$ for ATP and HPr, respectively. The $K_m$ value for the phosphorylase activity of HPrK/P was $14.16{\mu}M$ for P-Ser-HPr (HPr phosphorylated at the serine residue).

Keywords

References

  1. Brochu, D. and C. Vsfrnonvorut. 1999. The HPr(Ser) kinase of Streptococcus salivarius: Purification, properties, and cloning of the hprK gene. J. Bacteriol. 181: 709-717
  2. Bruckner, R. and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141-148 https://doi.org/10.1111/j.1574-6968.2002.tb11123.x
  3. Deutscher, J., U. Kessler, and W. Hengsternberg. 1985. Streptococcal phosphoenolpyruvate: Sugar phosphotransferase system: Purification and characterization of a phosphoprotein phosphatase which hydrolyzed the phosphoryl bond in serylphosphorylated histidine containing protein. J. Bacteriol. 163: 1203-1209
  4. Deutscher, J., J. Reizer, C. Fischer, A. Galinier, M. H. Saier Jr., and M. Steinmetz. 1994. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J. Bacteriol. 176: 3336-3344 https://doi.org/10.1128/jb.176.11.3336-3344.1994
  5. Djordjevic, G. M., J. H. Tchieu, and M. H. Saier Jr. 2001. Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224-3236 https://doi.org/10.1128/JB.183.10.3224-3236.2001
  6. Dossonnet, V., V. Mondero, M. Zagorec, A. Galinier, G. Pérex- Martinez, and J. Deutscher. 2000. Phosphorylation of HPr by the bifunctional HPr kinase/P-ser-HPr phosphorylase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582-2590 https://doi.org/10.1128/JB.182.9.2582-2590.2000
  7. Fieulaine, S., S. Morera, S. Poncet, V. Monedero, V. Gueguen- Chaignon, A. Galinier, J. Janin, J. Deutscher, and S. Nessler. 2001. X-ray structure of HPr kinase: A bacterial protein kinase with a P-loop nucleotide binding domain. EMBO J. 20: 3917-3927 https://doi.org/10.1093/emboj/20.15.3917
  8. Galinier, A., J. P. Lavergne, C. Geourjon, S. Fieulaine, S. Nessler, and J. M. Jault. 2002. A new family of phosphotransferase with a P-loop motif. J .Biol. Chem. 277: 11362-11367 https://doi.org/10.1074/jbc.M109527200
  9. Gonzalez, C. F., A. J. Stonestrom, G. L. Lorca, and M. H. Saier Jr. 2005. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Biochemistry 44: 598-608 https://doi.org/10.1021/bi048412y
  10. Han, H. U., C. R. Lim, and H. K. Park. 1990. Determination of microbial community as an indicator of kimchi fermentation. Kor. J. Food Sci. Technol. 22: 26-32
  11. Higgins, D., J. Thompson, T. Gibson, J. D. Thompson, D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  12. Hueck, C. J., W. Hillen, and M. H. Saier Jr. 1994. Analysis of a cis-active sequence mediating catabolite repression in Grampositive bacteria. Res. Microbiol. 145: 503-518 https://doi.org/10.1016/0923-2508(94)90028-0
  13. Jeong, S.-J., G. H. Kwon, J. Chun, J. S. Kim, C.-S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 17: 1018-1023
  14. Kim, J.-H., J.-Y. Park, S.-J. Jeong, J. Chun, and J. H. Kim. 2005. Cold shock response of Leuconotoc mesenteroides SY1 isolated from kimchi. J. Microbiol. Biotechnol. 15: 831- 837
  15. Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O. P. Kuipers, R. Leer, R. Tarchini, S. A. Peters, H. M. Sandbrink, M. W. Fiers, W. Stiekema, R. M. Lankhorst, P. A. Bron, S. M. Hoffer, M. N. Groot, R. Kerkhoven, M. de Vries, B. Ursing, W. M. de Vos, and R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100: 1990-1995
  16. Lee, K. H., J.-Y. Park, S.-J. Jeong, G.-H. Kwon, H.-J. Lee, H. C. Chang, D. K. Chung, J.-H. Lee, and J. H. Kim. 2007. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol. 17: 287-296
  17. Marquez, J. A., S. Hasenbein, B. Koch, S. Fieulaine, S. Nessler, R. B. Russell, W. Hengstenberg, and K. Scheffzek. 2002. Structure of the full-length HPr kinase/phosphorylase from Staphylococcus xylosus at 1.95 $\AA$ resolution; mimicking the product/substrate of the phosphor transfer reactions. Proc. Natl. Acad. Sci. USA 99: 3458-3463
  18. Park, J.-Y., S.-J. Jeong, J. Chun, J.-H. Lee, D. K. Chung, and J. H. Kim. 2006. Characterization of ptsHI operon from Leuconostoc mesenteroides SY1, a strain isolated from kimchi. J. Microbiol. Biotechnol. 16: 988-992
  19. Park, J.-Y., J.-S. Park, J.-H. Kim, S.-J. Jeong, J. Chun, J.-H. Lee, and J. H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SY1. J. Microbiol. Biotechnol. 15: 749-755
  20. Reizer, J., J. Deutscher, and M. H. Saier Jr. 1998. Metabolitesensitive, ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in Gram-positive bacteria. Biochemie 71: 989-996 https://doi.org/10.1016/0300-9084(89)90102-8
  21. Reizer, J., M. J. Novotny, W. Hengstenberg, and M. H. Saier Jr. 1984. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 160: 333-340
  22. Reizer, J., C. Hoischen, F. Titgemeyer, C. Rivolta, R. Rabus, J. Stülke, D. Karamata, M. H. Saier Jr., and W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157-1169 https://doi.org/10.1046/j.1365-2958.1998.00747.x
  23. Thevenot, T., D. Brochu, C. Vadeboncoeur, and I. R. Hamilton. 1995. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius. J. Bacteriol. 177: 2751-2759 https://doi.org/10.1128/jb.177.10.2751-2759.1995
  24. Titgemeyer, F. and W. Hillen. 2002. Global control of sugar metabolism: A Gram-positive solution. Antonie van Leeuwenhoek 82: 59-71 https://doi.org/10.1023/A:1020628909429
  25. Viana, R., V. Monedero, V. Dossonnet, C. Vadeboncoeur, G. Perez-Martinez, and J. Deutscher. 2000. Enzyme I and HPr from Lactobacillus casei: Their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570-584 https://doi.org/10.1046/j.1365-2958.2000.01862.x
  26. Walker, J. E., M. Saraste, J. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alph- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951