Survival of Escherichia coli O157:H7 and Salmonella typhimurium Inoculated on Chicken by Aqueous Chlorine Dioxide Treatment

  • Hong, Yun-Hee (Department of Food Science and Technology, Chungnam National University) ;
  • Ku, Kyoung-Ju (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Min-Ki (Department of Food Science and Technology, Chungnam National University) ;
  • Won, Mi-Sun (Biopharmaceutical Division, KRIBB) ;
  • Chung, Kyung-Sook (Biopharmaceutical Division, KRIBB) ;
  • Song, Kyung-Bin (Department of Food Science and Technology, Chungnam National University)
  • Published : 2008.04.30

Abstract

Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium was evaluated on inoculated chicken by aqueous chlorine dioxide ($CIO_2$) treatment. Chicken samples were inoculated with 6-7 log CFU/g of Escherichia coli O157:H7 and Salmonella typhimurium, respectively. The chicken samples were then treated with 0, 50, and 100 ppm of $CIO_2$ solution and stored at $4{\pm}1^{\circ}C$. Aqueous $CIO_2$ treatment decreased the populations of the pathogenic bacteria on the chicken breast and drumstick. In particular, 100 ppm $CIO_2$ treatment on the chicken breast and drumstick reduced Escherichia coli O157:H7 and Salmonella typhimurium by 1.00-1.27 and 1.37-1.44 log CFU/g, respectively. Aqueous $CIO_2$ treatment on the growth of the bacteria was continuously in effect during storage, resulting in the decrease of the populations of Escherichia coli O157:H7 and Salmonella typhimurium. These results suggest that aqueous $CIO_2$ treatment should be useful in improving the microbial safety of chicken during storage.

Keywords

References

  1. Anang, D. M., G. Rusul, J. Baker, and F. H. Ling. 2007. Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in chicken breast stored at $4^{\circ}C$. Food Control 18: 961-969 https://doi.org/10.1016/j.foodcont.2006.05.015
  2. Andrews, L. S., A. M. Key, R. L. Martin, R. Grodner, and D. L. Park. 2002. Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiol. 19: 261-267 https://doi.org/10.1006/fmic.2002.0493
  3. Breen, P. J., C. M. Compadre, E. K. Fifer, H. Salari, D. C. Serbus, and D. L. Lattin. 1995. Quaternary ammonium compounds inhibit and reduce the attachment of viable Salmonella typhimurium to poultry tissues. J. Food Sci. 60: 1191-1196 https://doi.org/10.1111/j.1365-2621.1995.tb04553.x
  4. Capita, R., C. Alonso-Calleja, M. C. Garcia-Fernandez, and B. Moreno. 2002. Activity of trisodium phosphate compared with sodium hydroxide wash solutions against Listeria monocytogenes attached to chicken skin during refrigerated storage. Food Microbiol. 19: 57-63 https://doi.org/10.1006/fmic.2001.0455
  5. Chouliara, E., A. Karatapanis, I. N. Savvaidis, and M. G. Kontominas. 2007. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extention of fresh chicken breast meat, stored at $4^{\circ}C$. Food Microbiol. 24: 607- 617 https://doi.org/10.1016/j.fm.2006.12.005
  6. Gonzalez-Fandos, E. and J. L. Dominguez. 2007. Effect of potassium sorbate washing on the growth of Listeria monocytogenes on fresh poultry. Food Control 18: 842-846 https://doi.org/10.1016/j.foodcont.2006.04.008
  7. Goksoy, E. O., C. James, and J. E. L. Corry. 2000. The effect of short-time microwave exposure on inoculated pathogens on chicken and the shelf-life of uninoculated chicken meat. J. Food Eng. 45: 153-160 https://doi.org/10.1016/S0260-8774(00)00054-6
  8. Hwang, C. and L. R. Beuchat. 1995. Efficacy of a lactic acid/ sodium benzoate wash solution in reducing bacterial contamination of raw chicken. Int. J. Food Microbiol. 27: 91-98 https://doi.org/10.1016/0168-1605(94)00150-5
  9. Juneja, V. K., M. V. Melendres, L. Huang, V. Gumudavelli, J. Subbiah, and H. Thippareddi. 2007. Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiol. 24: 328-335 https://doi.org/10.1016/j.fm.2006.08.004
  10. Jung, S. J., H. J. Kim, and H. Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353-1358
  11. Kim, D. and D. F. Day. 2007. A biocidal combination capable of sanitizing raw chicken skin. Food Control 18: 1272-1276 https://doi.org/10.1016/j.foodcont.2006.08.004
  12. Kim, J. M., W. Du, W. S. Otwell, M. R. Marshall, and C. Wei. 1998. Nutrients in salmon and red grouper fillets as affected by chlorine dioxide treatment. J. Food Sci. 63: 629-633 https://doi.org/10.1111/j.1365-2621.1998.tb15800.x
  13. Moon, G. S., W. J. Kim, and M. H. Kim. 2002. Synergistic effects of bacteriocin-producing Pediococcus acidilactici K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 12: 936- 942
  14. Park, K. J., E. J. Park, J. O. Kim, and Y. H. Kim. 1995. Change in the microflora on the surface of chicken meat during chilled and frozen storage. Korea J. Anim. Sci. 37: 279-286
  15. Patsas, A., I. Chlouliara, A. Badeka, I. N. Savvaidis, and M. G. Kontominas. 2006. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiol. 23: 423-429 https://doi.org/10.1016/j.fm.2005.08.004
  16. Singh, N., A. K. Singh, A. K. Bhunia, and R. L. Stroshine. 2002. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebens. Wiss. Technol. 35: 720- 729 https://doi.org/10.1006/fstl.2002.0933
  17. Wu, V. C. H. and B. Kim. 2007. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiol. 24: 794-800 https://doi.org/10.1016/j.fm.2007.03.010
  18. Youm, H. J., J. K. Ko, M. R. Kim, and K. B. Song. 2004. Inhibitory effect of aqueous chlorine dioxide on survival of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in pure cell culture. Korean J. Food Sci. Technol. 36: 514-517