Development of an Enrichment Culture Growing at Low Temperature used for Ensiling Rice Straw

  • Yang, Hong Yan (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Wang, Xiao Fen (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Gao, Li Juan (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Haruta, Shin (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Ishii, Masaharu (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Igarashi, Yasuo (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Cui, Zong Jun (College of Agronomy and Biotechnology, China Agricultural University)
  • Published : 2008.04.30

Abstract

To speed up the conversion of rice straw into feeds in a low-temperature region, a start culture used for ensiling rice straw at low temperature was selected by continuous enrichment cultivation. During the selection, the microbial source for enrichment was rice straw and soil from two places in Northeast China. Lab-scale rice straw fermentation at $10^{\circ}C$ verified, compared with the commercial inoculant, that the selected start culture lowered the pH of the fermented rice straw more rapidly and produced more lactic acid. The results from denatured gradient gel eletrophoresis showed that the selected start culture could colonize into the rice straw fermentation system. To analyze the composition of the culture, a 16S rRNA gene clone library was constructed. Sequencing results showed that the culture mainly consisted of two bacterial species. One (A) belonged to Lactobacillus and another (B) belonged to Leuconostoc. To make clear the roles of composition microbes in the fermented system, quantitative PCR was used. For species A, the DNA mass increased continuously until sixteen days of the fermentation, which occupied 65%. For species B, the DNA mass amounted to 5.5% at six days of the fermentation, which was the maximum relative value during the fermentation. To the authors' best knowledge, this is the first report on ensiling rice straw with a selected starter at low temperature and investigation of the fermented characteristics.

Keywords

References

  1. Ashelfold, K. E., A. J. Weightman, and J. C. Fry. 2002. PRIMROSE: A computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30: 3481-3489 https://doi.org/10.1093/nar/gkf450
  2. De Man, J., M. Rogosa, and M. E. Sharpe. 1972. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130- 135
  3. Department of Rural Surveys National Bureau of Statistics. 2006. China Rural Statistical Yearbook. China Statistics Press, Beijing
  4. Dykes, G. A. and A. von Holy. 1994. Taxonomic status of atypical Lactobacillus sake and Lactobacillus curvatus strains associated with vacuum packaged meat spoilage. Curr. Microbiol. 28: 197-200 https://doi.org/10.1007/BF01575961
  5. Florez, A. B. and B. Mayo. 2006. PCR-DGGE as a tool for characterizing dominant microbial populations in the Spanish blue-veined Cabrales cheese. Int. Dairy J. 16: 1205-1210 https://doi.org/10.1016/j.idairyj.2005.11.008
  6. Gao, L. J., X. F. Wang, H. Y. Yang, X. M. Li, and Z. J. Cui. 2007. Construction and composition diversity of a lactic acid bacterial community SFC-2. Environ. Sci. 28: 148- 154
  7. Haruta, S., Z. Cui, Z. Huang, M. Li, M. Ishii, and Y. Igarashi. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534 https://doi.org/10.1007/s00253-002-1026-4
  8. Haruta, S., M. Kondo, K. Nakamura, C. Chanchitpricha, H. Aiba, M. Ishii, and Y. Igarashi. 2004. Succession of a microbial community during stable operation of a semicontinuous garbage-decomposing system. J. Biosci. Bioeng. 98: 20-27 https://doi.org/10.1016/S1389-1723(04)70237-6
  9. Karami, K., S. Kheradmandinia, and M. J. Taherzadeh. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 30: 247-253 https://doi.org/10.1016/j.biombioe.2005.11.015
  10. Kato, S., S. Haruta, Z. J. Cui, M. Ishii, and Y. Igarashi. 2005. Stable coexistence of five bacterial strains as a cellulosedegrading community. Appl. Environ. Microbiol. 71: 7099-7106 https://doi.org/10.1128/AEM.71.11.7099-7106.2005
  11. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. Joo, M. C. Kim, H. C. Shin, T. Kim, T. H. Ryu, S. J. Kweon, T. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  12. Kim, S. and B. E. Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361-375 https://doi.org/10.1016/j.biombioe.2003.08.002
  13. 13. Kim, S. C. and A. T. Adesogan. 2006. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. J. Dairy Sci. 89: 3122-3132 https://doi.org/10.3168/jds.S0022-0302(06)72586-3
  14. Kim, W., M. S. Yahaya, and M. Goto. 2005. Effects of steam explosion on the chemical composition and rumen degradability of rice (Oryza sativa L.) straw. Grassland Sci. 51: 139-144 https://doi.org/10.1111/j.1744-697X.2005.00019.x
  15. Liu, R. G., H. Yu, and Y. Huang. 2005. Structure and morphology of cellulose in wheat straw. 12: 25- 34 https://doi.org/10.1023/B:CELL.0000049346.28276.95
  16. Martin, B., A. Jofre, M. Garriga, M. Pla, and T. Aymerich. 2006. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Appl. Environ. Microbiol. 72: 6040-6048 https://doi.org/10.1128/AEM.02852-05
  17. Olaniran, A. O., W. H. L. Stafford, D. A. Cowan, D. Pillay, and B. Pillay. 2007. Microbial community profiling in cisand trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560- 570
  18. Randazzo, C. L., S. Torriani, A. D. L. Akkermans, W. M. de Vos, and E. E. Vaughan. 2002. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl. Environ. Microbiol. 68: 1882-1892 https://doi.org/10.1128/AEM.68.4.1882-1892.2002
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  20. Samelis, J., A. Kakouri, K. G. Georgiadou, and J. Metaxopoulos. 1998. Evaluation of the extent and type of bacterial contamination at different stages of processing of cooked ham. J. Appl. Microbiol. 84: 649-660 https://doi.org/10.1046/j.1365-2672.1998.00392.x
  21. Shenyang Regional Meteorological Center of China Meteorological Administration 4/22/07 2007, posting date. Changes of Climate in Northeast China during 100 Years. Shenyang Regional Meteorological Center of China Meteorological Administration [Online.]
  22. Shi, Q. Q. and S. G. Wu. 2002. Industrial Microbial Breeding Science, 2nd Ed. Science Press, Beijing
  23. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4886 https://doi.org/10.1093/nar/25.24.4876
  24. Wang, X. F., S. Haruta, P. Wang, M. Ishii, Y. Igarashi, and Z. J. Cui. 2006. Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol. Ecol. 57: 106-115 https://doi.org/10.1111/j.1574-6941.2006.00099.x
  25. Weinberg, Z. G., G. Ashbell, and Y. Chen. 2003. Stabilization of returned dairy products by ensiling with straw and molasses for animal feeding. J. Dairy Sci. 86: 1325-1329 https://doi.org/10.3168/jds.S0022-0302(03)73717-5
  26. Yang, H. Y., L. J. Gao, X. F. Wang, W. D. Wang, and Z. J. Cui. 2007. Effects of cultivation conditions on the diversity of microbes involved in the conversion of rice straw to fodder. J. Environ. Sci. 19: 67-73 https://doi.org/10.1016/S1001-0742(07)60011-4
  27. Yang, H. Y., X. F. Wang, J. B. Liu, L. J. Gao, M. Ishii, Y. Igarashi, and Z. J. Cui. 2006. Effects of water-soluble carbohydrate content on silage fermentation of wheat straw. J. Biosci. Bioeng. 101: 232-237 https://doi.org/10.1263/jbb.101.232
  28. Yang, X. X., H. Z. Chen, H. L. Gao, and Z. H. Li. 2001. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour. Technol. 78: 277-280 https://doi.org/10.1016/S0960-8524(01)00024-4
  29. Zhu, H., F. Qu, and L. H. Zhu. 1993. Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5278-5280