References
- Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315 https://doi.org/10.1016/0378-1119(88)90440-4
- Bailey, J. E. 1991. Toward a science of metabolic engineering. Science 252: 1668-1681 https://doi.org/10.1126/science.2047876
- Ben-Samoun, K., G. Leblon, and O. Reyes. 1999. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol. Lett. 174: 125-130 https://doi.org/10.1111/j.1574-6968.1999.tb13558.x
- Charlier, D. 2004. Arginine regulation in Thermotoga neapolitana and Thermotoga maritime. Biochem. Soc. Trans. 32: 310-313 https://doi.org/10.1042/BST0320310
- Chinard, F. P. 1952. Photometric estimation of praline and ornithine. J. Biol. Chem. 199: 91-95
- Choi, D. K., W. S. Ryu, C. Y. Choi, and Y. H. Park. 1996. Production of L-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate-limited continuous culture. J. Ferment. Bioeng. 81: 216-219 https://doi.org/10.1016/0922-338X(96)82211-2
-
Choi, J. Y., J. O. Ahn, S. I. Kim, and H.-J. Shin. 2006. Expression of thermostable
$\alpha$ -glucosidase from Thermus caldophilus GK24 in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 2000-2003 - Chun, J.-Y., E.-J. Lee, H.-S. Lee, C.-I. Cheon, K.-H. Min, and M.-S. Lee. 1998. Molecular cloning and analysis of the argC gene from Corynebacterium glutamicum. Biochem. Mol. Biol. Int. 46: 437-447
- Eikmanns, B. J., E. Kleinertz, W. Liebl, and H. Sahm. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98 https://doi.org/10.1016/0378-1119(91)90545-M
- Eikmanns, B. J., N. Thum-Schmitz, L. Eggeling, K.-U. Ludtke, and H. Sahm 1994. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140: 1817-1828 https://doi.org/10.1099/13500872-140-8-1817
-
Friedrich, B., C. G. Friedrich, and B. Magasanik. 1978. Catabolic
$N^2$ -acetylornithine 5-aminotransferase of Klebsiella aerogenes: Control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J. Bactreriol. 133: 686-691 - Kim, H. M., E. Heinzle, and C. Wittmann. 2006. Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J. Microbiol. Biotechnol. 16: 1174-1179
- Kim, S.-Y. and J.-Y. Cho. 2005. A modified PCR-directed gene replacements method using l-Red recombination functions in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352
- Kim, T. Y. and S. Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143
- Kinoshita, S., K. Nakayama, and S. Udaka. 1957. The fermentative production of L-ornithine. J. Gen. Appl. Microbiol. 3: 276- 277 https://doi.org/10.2323/jgam.3.276
- Lee, Y.-J. and J.-Y. Cho. 2006. Genetic manipulation of a primary metabolic pathway for L-ornithine production in Escherichia coli. Biotechnol. Lett. 28: 1849-1856 https://doi.org/10.1007/s10529-006-9163-y
- Liu, Y., R. Van Heeswijck, P. Hoj, and N. Hoogenraad. 1995. Purification and characterization of ornithine acetyltransferase from Saccharomyces cerevisiae. Eur. J. Biochem. 228: 291- 296 https://doi.org/10.1111/j.1432-1033.1995.tb20262.x
- Menkel, E., G. Thierbach, L. Eggeling, and H. Sahm. 1989. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl. Environ. Microbiol. 55: 684- 688
- Peters-Wendisch, P. G., B. Schiel, V. F. Wendisch, E. Katsoulidis, B. Möckel, H. Sahm, and B. J. Eikmanns. 2001. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3: 295-300
- Payne, J. and J. G. Morris. 1969. Pyruvate carboxylase in Rhodopseudomonas spheroides. J. Gen. Microbiol. 59: 97-101 https://doi.org/10.1099/00221287-59-1-97
- Riedel, C., D. Rittmann, P. Dangel, B. Möckel, S. Petersen, H. Sahm, and B. J. Eikmanns 2001. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J. Mol. Microbiol. Biotechnol. 3: 573- 583
- Sakanyan, V., P. Petrosyan, M. Lecocq, A. Boyen, C. Legrain, M. Demarez, J.-N. Hallet, and N. Glansdorff. 1996. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: Enzyme evolution in the early steps of the arginine pathway. Microbiology 142: 99-108 https://doi.org/10.1099/13500872-142-1-99
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Press, Cold Spring Harbor, NY
- Schafer, A., A. Tauch, W. Jager, J. Kalinowski, G. Thierbach, and A. Pühler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined selections in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73 https://doi.org/10.1016/0378-1119(94)90324-7
- Schrumpf, B., A. Schwarzer, J. Kalinowski, A. Pühler, L. Eggeling, and H. Sahm. 1991. A functional split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol. 173: 4510-4516 https://doi.org/10.1128/jb.173.14.4510-4516.1991
- Udaka, S. 1966. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bacteriol. 91: 617-621 https://doi.org/10.1002/path.1700910242
- van der Rest, M. E., C. Lange, and D. Molenaar. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545 https://doi.org/10.1007/s002530051557