Effect of Increased Glutamate Availability on L-Ornithine Production in Corynebacterium glutamicum

  • Hwang, Joong-Hee (Division of Animal Science and Biotechnology, Sangji University) ;
  • Hwang, Gui-Hye (Division of Animal Science and Biotechnology, Sangji University) ;
  • Cho, Jae-Yong (Division of Animal Science and Biotechnology, Sangji University)
  • Published : 2008.04.30

Abstract

Glutamate availability in the argF-argR-proB${\Delta}$ strain of Corynebacterium glutamicum was increased by addition of glutamate to the cell or inactivation of the phosphoenolpyruvate carboxykinase activity and simultaneous overexpression of the pyruvate carboxylase activity to assess its effect on L-ornithine production. When glutamate was increased in an L-ornithine-producing strain, the production of L-ornithine was not changed. This unexpected result indicated that the intracellular concentration and supply of glutamate is not a rate-limiting step for the L-ornithine production in an L-ornithine-producing strain of C. glutamicum. In contrast, overexpression of the L-ornithine biosynthesis genes (argCJBD) resulted in approximately 30% increase of L-ornithine production, from 12.73 to 16.49 mg/g (dry cell weight). These results implied that downstream reactions converting glutamate to L-ornithine, but not the availability of glutamate, is the rate-limiting step for elevating L-ornithine production in the argF-argR-proB${\Delta}$ strain of C. glutamicum.

Keywords

References

  1. Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315 https://doi.org/10.1016/0378-1119(88)90440-4
  2. Bailey, J. E. 1991. Toward a science of metabolic engineering. Science 252: 1668-1681 https://doi.org/10.1126/science.2047876
  3. Ben-Samoun, K., G. Leblon, and O. Reyes. 1999. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol. Lett. 174: 125-130 https://doi.org/10.1111/j.1574-6968.1999.tb13558.x
  4. Charlier, D. 2004. Arginine regulation in Thermotoga neapolitana and Thermotoga maritime. Biochem. Soc. Trans. 32: 310-313 https://doi.org/10.1042/BST0320310
  5. Chinard, F. P. 1952. Photometric estimation of praline and ornithine. J. Biol. Chem. 199: 91-95
  6. Choi, D. K., W. S. Ryu, C. Y. Choi, and Y. H. Park. 1996. Production of L-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate-limited continuous culture. J. Ferment. Bioeng. 81: 216-219 https://doi.org/10.1016/0922-338X(96)82211-2
  7. Choi, J. Y., J. O. Ahn, S. I. Kim, and H.-J. Shin. 2006. Expression of thermostable $\alpha$-glucosidase from Thermus caldophilus GK24 in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 2000-2003
  8. Chun, J.-Y., E.-J. Lee, H.-S. Lee, C.-I. Cheon, K.-H. Min, and M.-S. Lee. 1998. Molecular cloning and analysis of the argC gene from Corynebacterium glutamicum. Biochem. Mol. Biol. Int. 46: 437-447
  9. Eikmanns, B. J., E. Kleinertz, W. Liebl, and H. Sahm. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98 https://doi.org/10.1016/0378-1119(91)90545-M
  10. Eikmanns, B. J., N. Thum-Schmitz, L. Eggeling, K.-U. Ludtke, and H. Sahm 1994. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140: 1817-1828 https://doi.org/10.1099/13500872-140-8-1817
  11. Friedrich, B., C. G. Friedrich, and B. Magasanik. 1978. Catabolic $N^2$-acetylornithine 5-aminotransferase of Klebsiella aerogenes: Control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J. Bactreriol. 133: 686-691
  12. Kim, H. M., E. Heinzle, and C. Wittmann. 2006. Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J. Microbiol. Biotechnol. 16: 1174-1179
  13. Kim, S.-Y. and J.-Y. Cho. 2005. A modified PCR-directed gene replacements method using l-Red recombination functions in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352
  14. Kim, T. Y. and S. Y. Lee. 2006. Accurate metabolic flux analysis through data reconciliation of isotope balance-based data. J. Microbiol. Biotechnol. 16: 1139-1143
  15. Kinoshita, S., K. Nakayama, and S. Udaka. 1957. The fermentative production of L-ornithine. J. Gen. Appl. Microbiol. 3: 276- 277 https://doi.org/10.2323/jgam.3.276
  16. Lee, Y.-J. and J.-Y. Cho. 2006. Genetic manipulation of a primary metabolic pathway for L-ornithine production in Escherichia coli. Biotechnol. Lett. 28: 1849-1856 https://doi.org/10.1007/s10529-006-9163-y
  17. Liu, Y., R. Van Heeswijck, P. Hoj, and N. Hoogenraad. 1995. Purification and characterization of ornithine acetyltransferase from Saccharomyces cerevisiae. Eur. J. Biochem. 228: 291- 296 https://doi.org/10.1111/j.1432-1033.1995.tb20262.x
  18. Menkel, E., G. Thierbach, L. Eggeling, and H. Sahm. 1989. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl. Environ. Microbiol. 55: 684- 688
  19. Peters-Wendisch, P. G., B. Schiel, V. F. Wendisch, E. Katsoulidis, B. Möckel, H. Sahm, and B. J. Eikmanns. 2001. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3: 295-300
  20. Payne, J. and J. G. Morris. 1969. Pyruvate carboxylase in Rhodopseudomonas spheroides. J. Gen. Microbiol. 59: 97-101 https://doi.org/10.1099/00221287-59-1-97
  21. Riedel, C., D. Rittmann, P. Dangel, B. Möckel, S. Petersen, H. Sahm, and B. J. Eikmanns 2001. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J. Mol. Microbiol. Biotechnol. 3: 573- 583
  22. Sakanyan, V., P. Petrosyan, M. Lecocq, A. Boyen, C. Legrain, M. Demarez, J.-N. Hallet, and N. Glansdorff. 1996. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: Enzyme evolution in the early steps of the arginine pathway. Microbiology 142: 99-108 https://doi.org/10.1099/13500872-142-1-99
  23. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory, Press, Cold Spring Harbor, NY
  24. Schafer, A., A. Tauch, W. Jager, J. Kalinowski, G. Thierbach, and A. Pühler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined selections in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73 https://doi.org/10.1016/0378-1119(94)90324-7
  25. Schrumpf, B., A. Schwarzer, J. Kalinowski, A. Pühler, L. Eggeling, and H. Sahm. 1991. A functional split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol. 173: 4510-4516 https://doi.org/10.1128/jb.173.14.4510-4516.1991
  26. Udaka, S. 1966. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bacteriol. 91: 617-621 https://doi.org/10.1002/path.1700910242
  27. van der Rest, M. E., C. Lange, and D. Molenaar. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545 https://doi.org/10.1007/s002530051557