Identification of Chemical Structure and Free Radical Scavenging Activity of Diphlorethohydroxycarmalol Isolated from a Brown Alga, Ishige okamurae

  • Heo, Soo-Jin (Faculty of Applied Marine Science, Cheju National University) ;
  • Kim, Jong-Pyung (Functional Metabolites Research Center, KRIBB) ;
  • Jung, Won-Kyo (Department of Marine Life Science, Chosun University) ;
  • Lee, Nam-Ho (Department of Chemistry, Cheju National University) ;
  • Kang, Hahk-Soo (Functional Metabolites Research Center, KRIBB) ;
  • Jun, Eun-Mi (Functional Metabolites Research Center, KRIBB) ;
  • Park, Soon-Hye (Functional Metabolites Research Center, KRIBB) ;
  • Kang, Sung-Myung (Faculty of Applied Marine Science, Cheju National University) ;
  • Lee, Young-Jae (Department of Veterinary Science, Cheju National University) ;
  • Park, Pyo-Jam (Department of Biotechnology, Konkuk University) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2008.04.30

Abstract

To obtain a natural antioxidant from a marine biomass, this study investigated the antioxidative activity of methanolic extracts from the marine brown alga, Ishige okamurae collected off Jeju Island. A potent free radical scavenging activity was detected in the ethyl acetate fraction containing polyphenolic compounds, and the potent antioxidant elucidated as a kind of phlorotannin, diphlorethohydroxycarmalol, by NMR and mass spectroscopic data. The free radical scavenging activities of the diphlorethohydroxycarmalol were investigated in relation to 1,1-diphenyl-2-picrylhydrazyl (DPPH), alkyl, and hydroxyl radicals using an electron spin resonance (ESR) system. The diphlorethohydroxycarmalol was found to scavenge DPPH ($IC_{50}=3.41{\mu}M$) and alkyl ($IC_{50}=4.92{\mu}M$) radicals more effectively than the commercial antioxidant, ascorbic acid. Therefore, these results present diphlorethohydroxycarmalol as a new phlorotannin with a potent antioxidative activity that could be useful in cosmetics, foods, and pharmaceuticals.

Keywords

References

  1. Adebajo, M. O. and H. D. Gesser. 2001. ESR study of alkyl radicals adsorbed on porous Vycor glass. I. Build-up of methyl and ethyl radicals. Appl. Surf. Sci. 171: 120-124 https://doi.org/10.1016/S0169-4332(00)00551-1
  2. Ahn, G. N., K. N. Kim, S. H. Cha, C. B. Song, J. Lee, M. S. Heo, I. K. Yeo, N. H. Lee, Y. H. Jee, J. S. Kim, M. S. Heu, and Y. J. Jeon. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_2O_2$-mediated DNA damage. Eur. Food Res. Technol. (In Press)
  3. Ahn, M. J., K. D. Yoon, C. Y. Kim, J. H. Kim, C. G. Shin, and J. Kim. 2006. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown alga, Ishige okamurae. Phytother. Res. 20: 711-713 https://doi.org/10.1002/ptr.1939
  4. Aruoma, O. I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75: 199-212 https://doi.org/10.1007/s11746-998-0032-9
  5. Cahyana, A. H., Y. Shuto, and Y. Kinoshita. 1992. Pyropheophytin A as an antioxidative substance from the marine alga, Arame (Eicenia bicyclis). Biosci. Biotechnol. Agrochem. 56: 1533- 1535 https://doi.org/10.1271/bbb.56.1533
  6. Dykens, J. A., J. M. Shick, C. Benoit, G. R. Buettner, and G. W. Winston. 1992. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol. 168: 219-241
  7. Frlich, I. and P. Riederer. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Drug Res. 45: 443-449
  8. Guiry, M. D. and G. Bulunden. 1991. Seaweed Resource in Europe: Uses and Potential. Wiley, Chichester West Sussex, U.K.
  9. Guo, Q., B. Zhao, S. Shen, J. Hou, J. Hu, and W. Xin. 1999. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim. Biophys. Acta 1427: 13-23 https://doi.org/10.1016/S0304-4165(98)00168-8
  10. Halliwell, B. and J. M. C. Gutteridge. 1999. Antioxidant defenses, pp. 105-159. In: Free Radicals in Biology and Medicine, 3rd Ed. Oxford Science Publications, Oxford, U.K.
  11. Heo, S. J., E. J. Pak, K. W. Lee, and Y. J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96: 1613-1623 https://doi.org/10.1016/j.biortech.2004.07.013
  12. Hiramoto, K., H. Johkoh, K. I. Sako, and K. Kikugawa. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radical Res. Commun. 19: 323-332 https://doi.org/10.3109/10715769309056521
  13. Huang, X., J. Dai, J. Fournier, A. M. Ali, Q. Zhang, and K. Frenkel. 2002. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radical Biol. Med. 32: 84-92 https://doi.org/10.1016/S0891-5849(01)00770-5
  14. Jimenez-Escrig, A., I. Jimenez-Jimenez, R. Pulido, and F. Saura-Calixto. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 81: 530- 534 https://doi.org/10.1002/jsfa.842
  15. Kakegawa, G., H. Matsumoto, and T. Satoh. 1992. Inhibitory effects of some natural products on the activation of hyaluronidase and their anti-allergic action. Chem. Pharm. Bull. 40: 1439-1442 https://doi.org/10.1248/cpb.40.1439
  16. Kang, H. S., H. Y. Chung, H. A. Jung, B. W. Son, and J. S. Choi. 2003. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 51: 1012-1014 https://doi.org/10.1248/cpb.51.1012
  17. Kang, K. A., K. H. Lee, S. Chae, R. Zhang, M. S. Jung, Y. M. Ham, J. S. Baik, N. H. Lee, and J. W. Hyun. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J. Cell. Biochem. 97: 609-620 https://doi.org/10.1002/jcb.20668
  18. Kappus, H. 1991. Lipid peroxidation: mechanism and biological relevance, pp. 59-75. In O. I. Aruoma and B. Halliwell (eds.). Free Radicals and Food Additives. Taylor & Francis, London, U.K.
  19. Kim, H. J., S. W. Kim, H. J. Hwang, M. K. Park, Y. A. G. Mahmoud, J. W. Choi, and J. W. Yun. 2006. Influence of agitation intensity and aeration rate on production of antioxidative exopolysaccharides from submerged mycelial culture of Ganoderma resinaceum. J. Microbiol. Biotechnol. 16: 1240-1247
  20. Kim, J. A., J. M. Lee, D. B. Shin, and N. H. Lee. 2004. The antioxidant activity and tyrosinase inhibitory activity of phlorotannins in Ecklonia cava. Food Sci. Biotechnol. 13: 476-480
  21. Kinsella, J. E., E. Frankel, B. German, and J. Kanner. 1993. Possible mechanism for the protective role of the antioxidant in wine and plants foods. Food Technol. 47: 85-89
  22. Lai, L. S., S. T. Chou, and W. W. Chao. 2001. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agric. Food Chem. 49: 963-968 https://doi.org/10.1021/jf001146k
  23. Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  24. Li, S. M. and K. W. Glombitza. 1991. Carmalols and phlorethofuhalols from the brown alga Carpophyllum maschalocarpum. Phytochemistry 30: 3417-3421 https://doi.org/10.1016/0031-9422(91)83220-F
  25. Lim, S. N., P. C. K. Cheung, V. E. C. Ooi, and P. O. Ang. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J. Agric. Food Chem. 50: 3862-3866 https://doi.org/10.1021/jf020096b
  26. Nakai, M., N. Kageyama, K. Nakahara, and W. Miki. 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Mar. Biotechnol. 8: 409-414 https://doi.org/10.1007/s10126-005-6168-9
  27. Nakayama, T., M. Takahashi, Y. Fukuyama, and Z. Kinzyo. 1989. An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA. Agric. Biol. Chem. 63: 3025-3030
  28. Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylydrazyl radical. Free Radical Biol. Med. 21: 895-902 https://doi.org/10.1016/0891-5849(96)00237-7
  29. Nisizawa, K., H. Noda, R. Kikuchi, and T. Watamaba. 1987. The main seaweed foods in Japan. Hydrobiologia 151/152: 5- 29 https://doi.org/10.1007/BF00046102
  30. Ohkatsu, Y., T. Matsuura, and M. Yamato. 2003. A phenolic antioxidant trapping both alkyl and peroxy radicals. Polym. Degrad. Stabil. 81: 151-156 https://doi.org/10.1016/S0141-3910(03)00084-3
  31. Park, P. J., S. J. Heo, E. J. Park, S. K. Kim, H. G. Byun, B. T. Jeon, and Y. J. Jeon. 2005. Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. J. Agric. Food Chem. 53: 6666-6672 https://doi.org/10.1021/jf050582+
  32. Rhee, S. J., C. Y. J. Lee, M. R. Kim, and C. H. Lee. 2004. Potential antioxidant peptides in rice wine. J. Microbiol. Biotechnol. 14: 715-721
  33. Rosen, G. M. and E. J. Rauckman. 1984. Spin trapping of superoxide and hydroxyl radicals, pp. 198-209. In L. Packer (ed.), Methods in Enzymology. Academic Press. Orlando, FL
  34. Ruberto, G., M. T. Baratta, D. M. Biondi, and V. Amico. 2001. Antioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system. J. Appl. Phycol. 13: 403-407 https://doi.org/10.1023/A:1011972230477
  35. Schneider, Y., F. Vincent, B. Duranton, L. Badolo, F. Gosse, C. Bergmann, N. Seiler, and F. Raul. 2000. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 158: 85-91 https://doi.org/10.1016/S0304-3835(00)00511-5
  36. Shon, Y. H., S. Y. Kim, J. S. Lee, and K. S. Nam. 2000. Enhancement of phase II and antioxidant enzymes in mice by soybeans fermented with basidiomycetes. J. Microbiol. Bioechnol. 10: 851-857
  37. Sukenik, A., O. Zmora, and Y. Carmeli. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition: II. Nannochloropsis sp. Aquaculture 117: 313-326 https://doi.org/10.1016/0044-8486(93)90328-V
  38. Tepe, B. and A. Sokmen. 2007. Screening of the antioxidative properties and total phenolic contents of three endemic Tanacetum subspecies from Turkish flora. Bioresour. Technol. 98: 3076-3079 https://doi.org/10.1016/j.biortech.2006.10.019
  39. Yan, X. J., Y. Chuda, M. Suzuki, and T. Nagata. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis. Biosci. Biotechnol. Agrochem. 63: 605-607 https://doi.org/10.1271/bbb.63.605
  40. Yuan, Y. V., D. E. Bone, and M. F. Carrington. 2005. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 91: 485-494 https://doi.org/10.1016/j.foodchem.2004.04.039
  41. Yun, B. S., I. K. Lee, J. P. Kim, and I. D. Yoo. 2000. Two p-terphenyls from mushroom Paxillus panuoides with free radical scavenging activity. J. Microbiol. Biotechnol. 10: 233- 237
  42. Zhang, D., X. Li, J. S. Kang, H. D. Choi, J. H. Jung, and B. W. Son. 2007. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate fungus Penicillium sp. J. Microbiol. Biotechnol. 17: 865-867
  43. Zheng, W. and S. Y. Wang. 2001. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49: 5165-5170 https://doi.org/10.1021/jf010697n