Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E. (Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station) ;
  • Shim, Won-Bo (Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station)
  • Published : 2008.04.30

Abstract

In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

Keywords

References

  1. Brown, D. W., F. Cheung, R. H. Proctor, R. A. E. Butchko, L. Zheng, Y. Lee, T. Utterback, S. Smith, T. Feldblyum, et al. 2005. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet. Biol. 42: 848-861 https://doi.org/10.1016/j.fgb.2005.06.001
  2. Candau, R., J. Avalos, and E. Cerda-Olmedo. 1992. Regulation of gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol. 100: 1184-1188 https://doi.org/10.1104/pp.100.3.1184
  3. Cary, J. W., K. C. Ehrlich, J. M. Bland, and B. G. Montalbano. 2006. The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Appl. Environ. Microbiol. 72: 1096-1101 https://doi.org/10.1128/AEM.72.2.1096-1101.2006
  4. Flaherty, J. E., A. M. Pirttila, B. H. Bluhm, and C. P. Woloshuk. 2003. PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl. Environ. Microbiol. 69: 5222-5227 https://doi.org/10.1128/AEM.69.9.5222-5227.2003
  5. Flaherty, J. E. and C. P. Woloshuk. 2004. Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl. Environ. Microbiol. 70: 2653- 2659 https://doi.org/10.1128/AEM.70.5.2653-2659.2004
  6. Fraser, J. A., M. A. Davis, and M. J. Hynes. 2002. A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl. Environ. Microbiol. 68: 2802-2808 https://doi.org/10.1128/AEM.68.6.2802-2808.2002
  7. Fujii, I., Y. Yasuoka, H. Tsai, Y. C. Chang, K. J. Kwon-Chung, and Y. Ebizuka. 2004. Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis. J. Biol. Chem. 279: 44613-44620 https://doi.org/10.1074/jbc.M406758200
  8. Gelderblom, W. C. A., K. Jaskiewicz, W. F. O. Marasas, P. G. Thiel, R. M. Horak, R. Vleggaar, and N. P. J. Kriek. 1988. Fumonisins - novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54: 1806-1811
  9. Hayes, J. D. and D. J. Pulford. 1995. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30: 445-600 https://doi.org/10.3109/10409239509083491
  10. Jang, M., B. C. Park, D. H. Lee, C. W. Kho, S. Cho, B. R. Lee, and S. G. Park. 2006. Proteome analysis of Bacillus subtilis when overproducing secretory protein. 16: 368-373
  11. Jensen, O. N., P. Mortensen, O. Vorm, and M. Mann. 1997. Automation of matrix-assisted laser desorption/ionization mass spectrometry using fuzzy logic feedback control. Anal. Chem. 69: 1706-1714 https://doi.org/10.1021/ac961189t
  12. Keller, N. P., H. C. Dischinger, D. Jr. Bhatnagar, T. E. Cleveland, and A. H. J. Ullah. 1993. Purification of a 40-kilodalton methyltransferase active in the aflatoxin biosynthetic pathway. Appl. Environ. Microbiol. 59: 479-484
  13. King, H. C. and A. A. Sinha. 2001. Gene expression profile analysis by DNA microarrays: Promise and pitfall. JAMA 286: 2280-2288 https://doi.org/10.1001/jama.286.18.2280
  14. Lamarre, C., J.-D. LeMay, N. Deslauriers, and Y. Bourbonnais. 2001. Candida albicans expresses an unusual cytoplasmic manganese containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J. Biol. Chem. 276: 43784-43791 https://doi.org/10.1074/jbc.M108095200
  15. Lara-Ortiz, T., H. Riveros-Rosas, and J. Aguirre. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50: 1241-1255 https://doi.org/10.1046/j.1365-2958.2003.03800.x
  16. Li, Y., T. T. Huang, E. J. Carlson, S. Melov, P. C. Ursell, J. L. Olson, L. J. Noble, M. P. Yoshimura, C. Berger, P. H. Chan, D. C. Wallace, and C. J. Epstein. 1995. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11: 376-381 https://doi.org/10.1038/ng1295-376
  17. Lieu, H.-Y., H.-S. Song, S.-N. Yang, J.-H. Kim, H.-J. Kim, Y.-D. Park, C.-S. Park, and H.-Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  18. Liu, T. G., D. L. You, C. Valenzano, Y. H. Sun, J. L. Li, Q. Yu, X. F. Zhou, D. E. Cane, and Z. X. Deng. 2006. Identification of NanE as the thioesterase for polyether chain release in nanchangmycin biosynthesis. Chem. Biol. 13: 945- 955 https://doi.org/10.1016/j.chembiol.2006.07.006
  19. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}}\;_T$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  20. Loyall, L., K. Uchida, S. Braun, M. Furuya, and H. Frohnmeyer. 2000. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase. 12: 1939-1950 https://doi.org/10.1105/tpc.12.10.1939
  21. Merrill, A. H., D. C. Liotta, and R. T. Riley. 1996. Fumonisins: Fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 6: 218-223 https://doi.org/10.1016/0962-8924(96)10021-0
  22. Missmer, S. A., L. Suarez, M. Felkner, E. Wang, A. H. Merrill Jr., K. J. Rothman, and K. A. Hendricks. 2006. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 114: 237-241 https://doi.org/10.1289/ehp.8221
  23. Munkvold, G. P. and A. E. Desjardins. 1997. Fumonisins in maize: Can we reduce their occurrence? Plant Dis. 81: 556- 565 https://doi.org/10.1094/PDIS.1997.81.6.556
  24. Nelson, P. E., T. A. Toussoun, and W. F. O. Marasas. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park
  25. Park, D. L. and T. C. Troxell. 2002. US perspective on mycotoxin regulatory issues. Adv. Exp. Med. Biol. 504: 277-285
  26. Pirttila, A. M., L. M. McIntyre, G. A. Payne, and C. P. Woloshuk. 2004. Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet. Biol. 41: 647-656 https://doi.org/10.1016/j.fgb.2004.02.001
  27. Proctor, R. H., A. E. Desjardins, R. D. Plattner, and T. M. Hohn. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27: 100-112 https://doi.org/10.1006/fgbi.1999.1141
  28. Proctor, R. H., D. W. Brown, R. D. Plattner, and A. E. Desjardins. 2003. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet. Biol. 38: 237-249 https://doi.org/10.1016/S1087-1845(02)00525-X
  29. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635
  30. Rim, S.-O., J.-H. Lee, S.-K. Hwang, S.-J. Suh, J.-M. Lee, I.-K. Rhee, and J.-G. Kim. Proteome analysis of Waito-c rice seedling treated with culture fluid of gibberellin-producing fungus, Fusarium proliferatum KGL0401. J. Microbiol. Biotechnol. 16: 1990-1994
  31. Sagaram, U. S., R. A. E. Butchko, and W. B. Shim. 2006. The putative monomeric G-protein GBP1 is negatively associated with fumonisin B1 production in Fusarium verticillioides. Mol. Plant Pathol. 7: 381-389 https://doi.org/10.1111/j.1364-3703.2006.00347.x
  32. Sagaram, U. S., M. V. Kolomiets, and W. B. Shim. 2006. Regulation of fumonisin biosynthesis in Fusarium verticillioidesmaize system. Plant Pathol. J. 22: 203-210 https://doi.org/10.5423/PPJ.2006.22.3.203
  33. Seul, K.-J., S.-H. Park, C.-M. Ryu, Y.-H. Lee, and S.-Y. Ghim. 2007. Proteome analysis of Paenibacillus polymyxa E681 affected by barley. J. Microbiol. Biotechnol. 17: 934-944
  34. Shim, W. B. and C. P. Woloshuk. 1999. Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol. Lett. 177: 109-116 https://doi.org/10.1111/j.1574-6968.1999.tb13720.x
  35. Shim, W. B. and C. P. Woloshuk. 2001. Regulation of fumonisin B-1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl. Environ. Microbiol. 67: 1607-1612 https://doi.org/10.1128/AEM.67.4.1607-1612.2001
  36. Tolleson, W. H., W. B. Melchior, S. M. Morris, L. J. McGarrity, O. E. Domon, L. Muskhelishvili, S. J. James, and P. C. Howard. 1996. Apoptotic and anti-proliferative effects of fumonisin B-1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells. Carcinogenesis 17: 239-249 https://doi.org/10.1093/carcin/17.2.239
  37. Tudzynski, B., H. Kawaide, and Y. Kamiya. 1998. Gibberellin biosynthesis in Gibberella fujikuroi: Cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet. 34: 234- 240 https://doi.org/10.1007/s002940050392
  38. Yoshizawa, T., A. Yamashita, and Y. Luo. 1994. Fumonisin occurrence in corn from high-risk and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol. 60: 1626-1629
  39. Yu, F. G., X. C. Zhu, and L. C. Du. 2005. Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol. Lett. 248: 257-264 https://doi.org/10.1016/j.femsle.2005.05.053