Construction of Heat-Inducible Expression Vector of Corynebacterium glutamicum and C. ammoniagenes: Fusion of ${\lambda}$ Operator with Promoters Isolated from C. ammoniagenes

  • Park, Jong-Uk (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Jo, Jae-Hyung (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Kim, Young-Ji (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Chung, So-Sun (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Lee, Jin-Ho (Department of Food Science and Biotechnology, Kyungsung University) ;
  • Lee, Hyune-Hwan (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • Published : 2008.04.30

Abstract

The heat-inducible expression vectors for Corynebacterium glutamicum and C. ammoniagenes were constructed by using the ${\lambda}O_L1$ and the cryptic promoters, CJ1 and CJ4 that express genes constitutively in C. ammoniagenes. Although the promoters were isolated from C. ammoniagenes, CJ1 and CJ4 were also active in C. glutamicum. To construct vectors, the $O_L1$ from the ${\lambda}P_L$ promoter was isolated and fused to the CJ1 and CJ4 promoters by recombinant PCR. The resulting artificial promoters, CJ1O and CJ4O, which have one ${\lambda}O_L1$, and CJ1OX2, which has two successive ${\lambda}O_L1$, were fused to the green fluorescent protein (GFP) gene followed by subcloning into pCES208. The expression of GFP in the corynebacteria harboring the vectors was regulated successfully by the temperature-sensitive cI857 repressor. Among them, C. ammoniagenes harboring plasmid pCJ1OX2G containing GFP fused to CJ1OX2 showed more GFP than the other ones and the expression was tightly regulated by the repressor. To construct the generally applicable expression vector using the plasmid pCJ1OX2G, the His-tag, enterokinase (EK) moiety, and the MCS were inserted in front of the GFP gene. Using the vector, the expression of pyrR from C. glutamicum was tried by temperature shift-up. The results indicated that the constructed vectors (pCeHEMG) can be successfully used in the expression and regulation of foreign genes in corynebacteria.

Keywords

References

  1. Billman-Jacobe, H., L. Wang, A. Kotrr, D. Stewert, and A. Radford. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613
  2. Cadenas, R. F., C. Fernandez-Gonzalez, J. F. Martin, and J. A. Gil. 1996. Construction of new cloning vectors for Brevibacterium lactofermentum. FEMS Microbiol. Lett. 137: 63-68 https://doi.org/10.1111/j.1574-6968.1996.tb08083.x
  3. Cortay, J. C., D. Negre, A. Galinier, B. Dulcos, G. Perriere, and A. J. Cozzone. 1991. Regulation of the acetate operon in Escherichia coli: Purification and functional characterization of the IcIR repressor. EMBO J. 10: 675-679
  4. Deb, J. K. and N. Nath. 1999. Plasmids of corynebacteria. FEMS Microbiol. Lett. 175: 11-20 https://doi.org/10.1111/j.1574-6968.1999.tb13596.x
  5. Eikmanns, B. J., E. Kleinertz, W. Liebel, and H. Sahm. 1991. A family of Corynebacterium glutamicum-Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98 https://doi.org/10.1016/0378-1119(91)90545-M
  6. Jacoby, M., N.-N. Carole-Estelle, and A. Burkovski. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 4: 437-441
  7. Klebnikov, A., F. Risa, T. Skaug, T. A. Carrier, and J. D. Deasling. 2000. Regulatable arabinose-inducible gene expression system with consistent controlling in all cells of a culture. J. Bacteriol. 182: 7029-7034 https://doi.org/10.1128/JB.182.24.7029-7034.2000
  8. Liebel, W., R. Klamer, and K.-H. Schliefer. 1989. Requirement of chelating compounds for growth of Corynebacterium glutamicum in synthetic media. Appl. Microbiol. Biotechnol. 32: 205-210 https://doi.org/10.1007/BF00165889
  9. Liull, D. and I. Poquet. 2004. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398-5406 https://doi.org/10.1128/AEM.70.9.5398-5406.2004
  10. Martin, J. F., L. M. Mateos, and J. A. Gil. 1987. Cloning system of amino acid producing corynebacteria. Bio/Technology 5: 137-146 https://doi.org/10.1038/nbt0287-137
  11. Park, S.-D., S.-N. Lee, I.-H. Park, J.-S. Choi, W.-K. Jeong, Y. Kim, and H.-S. Lee. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795
  12. Patek, M., B. J. Eikmanns, J. Patek, and H. Sahm. 1996. Promoters of Corynebacterium glutamicum: Cloning, molecular analysis and search for a consensus motif. Microbiology 142: 1297-1309 https://doi.org/10.1099/13500872-142-5-1297
  13. Patek, M., J. Nesvera, A. Guyonvarch, O. Reyes, and G. Leblon. 2003. Promoters of Corynebacterium glutamicum. J. Bacteriol. 104: 311-323
  14. Patek, M., G. Muth, and W. Wohllenben. 2003. Function of Corynebacterium glutamicum promoters in Escherichia coli, Streptomyces lividans, and Bacillus subtilis. J. Biotechnol. 104: 325-334 https://doi.org/10.1016/S0168-1656(03)00159-7
  15. Salim, K., V. Haedens, J. Content, G. Leblon, and K. Huygen. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400
  16. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  17. Srivastava, P. and J. K. Deb. 2002. Construction of fusion vectors of corynebacteria: Expression of glutathione-S-transferase fusion protein in Corynebacterium glutamicum ATCC 21476. FEMS Microbiol. 212: 209-216 https://doi.org/10.1111/j.1574-6968.2002.tb11268.x
  18. Tsuchiya, M. and Y. Morinaga. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in Coryneform bacteria. Biotechnology 6: 428-430 https://doi.org/10.1038/nbt0488-428
  19. Volker, F. W. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 999- 1009
  20. Wendisch, V. F., M. Spies, S. Reinscheid, H. Sahm, and B. J. Eikmanns. 1997. Regulation of acetate metabolism in Corynebacterium glutamicum: Transcriptional control of the isocitrate lyase and malate synthase gene. Arch. Microbiol. 168: 262-269 https://doi.org/10.1007/s002030050497
  21. Yashihama, M., K. Higashiro, E. A. Rao, M. Aakedo, W. G. Shanabruch, M. T. Follettie, G. C. Walker, and A. J. Sinskey. 1985. Cloning vector systems for Corynebacterium glutamicum. J. Bacteriol. 162: 591-597