Modified T-RFLP Methods for Taxonomic Interpretation of T-RF

  • Lee, Hyun-Kyung (Department of Microbiology, Chungbuk National University) ;
  • Kim, Hye-Ryoung (Department of Microbiology, Chungbuk National University) ;
  • Mengoni, Alessio (Department of Animal Biology and Genetics, University of Firenze) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • Published : 2008.04.30

Abstract

Terminal restriction fragment length polymorphism (T-RFLP) is a method that has been frequently used to survey the microbial diversity of environmental samples and to monitor changes in microbial communities. T-RFLP is a highly sensitive and reproducible procedure that combines a PCR with a labeled primer, restriction digestion of the amplified DNA, and separation of the terminal restriction fragment (T-RF). The reliable identification of T-RF requires the information of nucleotide sequences as well as the size of T-RF. However, it is difficult to obtain the information of nucleotide sequences because the T-RFs are fragmented and lack a priming site of 3'-end for efficient cloning and sequence analysis. Here, we improved on the T-RFLP method in order to analyze the nucleotide sequences of the distinct T-RFs. The first method is to selectively amplify the portion of T-RF ligated with specific oligonucleotide adapters. In the second method, the termini of T-RFs were tailed with deoxynucleotides using terminal deoxynucleotidyl transferase (TdT) and amplified by a second round of PCR. The major T-RFs generated from reference strains and from T-RFLP profiles of activated sludge samples were efficiently isolated and identified by using two modified T-RFLP methods. These methods are less time consuming and labor-intensive when compared with other methods. The T-RFLP method using TdT has the advantages of being a simple process and having no limit of restriction enzymes. Our results suggest that these methods could be useful tools for the taxonomic interpretation of T-RFs.

Keywords

References

  1. Ahn, J. H., M. C. Kim, H. C. Shin, M. K. Choi, S. S. Yoon, T. Kim, H. G. Song, and G. H. Lee. 2006. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 16: 1561-1569
  2. Blackwood, C. B. and J. S. Buyer. 2007. Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities. Soil Biol. Biochem. 39: 590-599 https://doi.org/10.1016/j.soilbio.2006.09.010
  3. Eldridge, M. L., M. W. Cadotte, A. E. Rozmus, and S. W. Wilhelm. 2007. The response of bacterial groups to changes in available iron in the Eastern subtropical Pacific Ocean. J. Exp. Mar. Biol. Ecol. 348: 11-22 https://doi.org/10.1016/j.jembe.2007.02.018
  4. Horz, H. P., M. Yimga, and W. Liesack. 2001. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl. Environ. Microbiol. 67: 4177-4185 https://doi.org/10.1128/AEM.67.9.4177-4185.2001
  5. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774
  6. Ju, D. H., M. K. Choi, J. H. Ahn, M. H. Kim, J. C. Cho, T. Kim, T. Kim, C. N. Seong, and J. O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261
  7. Kaplan, C. W. and C. L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J. Microbiol. Methods 54: 121-125 https://doi.org/10.1016/S0167-7012(03)00003-4
  8. Kim, J. B., C. K. Kim, T. S. Ahn, H. K. Song, and D. H. Lee. 2001. Characterization of bacterial community in the ecosystem amended with phenol. Korean J. Microbiol. 37: 72-79
  9. Lee, D. H., Y. G. Zo, and S. J. Kim. 1996. Non-radioactive method to study genetic profiles of natural bacterial communities by PCR-single strand-conformation polymorphism. Appl. Environ. Microbiol. 62: 3112-3120
  10. Lee, H. K., J. H. Kim, C. K. Kim, and D. H. Lee. 2004. Molecular characterization of the bacterial community in activated sludges by PCR-RFLP. Korean J. Microbiol. 40: 307-312
  11. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522
  12. Liu, X. C., Y. Zhang, M. Yang, Z. Y. Wang, and W. Z. Lv. 2007. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method. J. Environ. Sci. 19: 60-66 https://doi.org/10.1016/S1001-0742(07)60010-2
  13. Macdonald, C. A., B. K. Singh, J. A. Peck, A. P. van Schaik, L. C. Hunter, J. Horswell, C. D. Campbell, and T. W. Speir. 2007. Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biol. Biochem. 39: 2576-2586 https://doi.org/10.1016/j.soilbio.2007.04.028
  14. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327 https://doi.org/10.1016/S1369-5274(99)80056-3
  15. Mengoni, A., E. Grassi, and M. Bazzicalupo. 2002. Cloning method for taxonomic interpretation of T-RFLP patterns. BioTechniques 33: 990-992
  16. Moeseneder, M. M., J. M. Arrieta, G. Muyzer, C. Winter, and G. J. Herndl. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities, and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65: 3518-3525
  17. Moeseneder, M. M., C. Winter, J. M. Arrieta, and G. J. Herndl. 2001. Terminal-restriction fragment length polymorphism (TRFLP) screening of a marine archaeal clone library to determine the different phylotypes. J. Microbiol. Methods 44: 159-172 https://doi.org/10.1016/S0167-7012(00)00247-5
  18. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  19. Nagashima, K., T. Hisada, M. Sato, and J. Mochizuki. 2003. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl. Environ. Microbiol. 69: 1251- 1262 https://doi.org/10.1128/AEM.69.2.1251-1262.2003
  20. Nunan, N., T. J. Daniell, B. K. Singh, A. Papert, J. W. McNicol, and J. I. Prosser. 2005. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl. Environ. Microbiol. 71: 6784-6792 https://doi.org/10.1128/AEM.71.11.6784-6792.2005
  21. Ranjard, L., F. Poly, and S. Nazaret. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: Application to soil environment. Res. Microbiol. 151: 167-177 https://doi.org/10.1016/S0923-2508(00)00136-4
  22. Rho, S., N. H. An, D. H. Ahn, K. H. Lee, D. H. Lee, and D. Jahng. 2005. PCR-T-RFLP analyses of bacterial communities in activated sludges in the aeration tanks of domestic and industrial wastewater treatment plants. J. Microbiol. Biotechnol. 15: 287-295
  23. Shuang, J. L., C. H. Liu, S. Q. An, Y. Xing, G. Q. Zheng, and Y. F. Shen. 2006. Some universal characteristics of intertidal bacterial diversity as revealed by 16S rRNA gene-based PCR clone analysis. J. Microbiol. Biotechnol. 16: 1882-1889
  24. Smalla, K., M. Oros-Sichler, A. Milling, H. Heuer, S. Baumgarte, R. Becker, et al. 2007. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J. Microbiol. Methods 69: 470-479 https://doi.org/10.1016/j.mimet.2007.02.014
  25. Tsai, Y. P., S. J. You, T. Y. Pai, and K. W. Chen. 2005. Effect of cadmium on composition and diversity of bacterial communities in activated sludges. Int. Biodeterior. Biodegrad. 55: 285-291 https://doi.org/10.1016/j.ibiod.2005.03.005
  26. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, et al. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  27. Widmer, F., M. Hartmann, B. Frey, and R. Kölliker. 2006. A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. J. Microbiol. Methods 66: 512-520 https://doi.org/10.1016/j.mimet.2006.02.007