Removal of Aqueous Calcium Ion by Micellar Enhanced Ceramic Membranes Adding Surfactant

계면활성제를 첨가한 미셀 형성 세라믹 분리막에 의한 칼슘이온 제거

  • Park, Jin-Yong (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Park, Bo-Reum (Department of Environmental Science & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 박보름 (한림대학교 환경생명공학과)
  • Published : 2008.03.30

Abstract

Sodium dodecyl sulfate, which was anionic surfactant, at a concentration higher than its critical micellar concentration was added to calcium solution for forming micelles. Then aggregates were formed by adsorption or binding of calcium ions on the surface of micelles, and gathering between them, and then rejected by two kinds of ceramic membranes to remove calcium ions. As result, rejection rates of calcium were higher than 99.98%. And in our experimental range the higher TMP trended to increase the resistance of membrane fouling ($R_f$), total permeate volume ($V_T$), dimensionless permeate flux ($J/J_o$) and permeate flux (J) because TMP was driving force. And we investigated effects of $N_2$-back-flushing time and filtration time, that was back-flushing period, during periodic $N_2$-back-flushing on ceramic membranes. As result, optimal BTs for NCMT-623l ($0.07{\mu}m$ pore size) and NCMT-7231 membrane ($0.10{\mu}m$) were 10 sec and 15 sec, respectively. Also, optimal FT was 5 min for both membranes, and the frequent $N_2$-back-flushing could decrease membrane fouling effectively. Then, the optimal conditions resulting from our experiments for synthetic calcium solution were applied to groundwater using as washing process of soymilk package. As result, rejection rates of calcium were higher than 99.98%.

본 연구에서는 칼슘 이온 제거를 위해 칼슘용액에 임계미셀농도(CMC) 이상으로 음이온계면활성제인 sodium dodecyl sulfate (SDS)를 주입하여 미셀을 형성한 후, 미셀 표면에 칼슘 이온의 흡착 또는 결합으로 형성된 응집체들을 2종류의 세라믹 분리막으로 배제하였다. 그 결과, 99.98% 이상 칼슘 배제율을 보였다. 또한 본 실험범위에서 TMP가 증가할수록 막오염($R_f$)은 증가하는 경향을 보였지만, 구동력의 증가로 인해 총여과부피($V_T$) 및 무차원한 투과선속($J/J_o$), 투과선속(J) 역시 증가하였다. 또한 세라믹 분리막에 대하여 주기적 질소 역세척을 실시할 경우, 질소 역세척 시간(BT) 및 여과 시간(FT), 즉 역세척 주기의 영향을 조사하였다. 그 결과, NCMT-6231 (평균기공 $0.07{\mu}m$) 및 NCMT-7231 ($0.10{\mu}m$) 분리막의 최적 BT는 각각 10초, 15초이었다. 또한, 최적 FT는 2종류 분리막 모두 5분으로, 빈번한 질소 역세척이 막오염을 효과적으로 감소시켰다. 한편 칼슘용액으로 실험하여 도출된 최적 운전조건을 두유 포장팩 세척수로 사용하고 있는 지하수에 적용한 결과, 2종류의 분리막 모두 칼슘을 99.98% 이상 제거할 수 있었다.

Keywords

References

  1. 백기태, 양지원, '미셀 한외여과를 이용한 지하환경복원', 공업화학전망, 7(2), 153 (2003)
  2. E. Fernandez, J. M. Benito, C. Pazos, and J. Coca, 'Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions', J. Membr. Sci., 246, 1 (2005)
  3. P. Rai, C. Rai, G. C. Majumdar, S. DasGupta, and S. De, 'Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode', J. Membr. Sci., 283, 116 (2006) https://doi.org/10.1016/j.memsci.2006.06.018
  4. 남석태, 한명진, '무기 콜로이드 현탁액의 십자류정밀여과에 의한 투과유속의 감소거동', 멤브레인, 15(4), 338 (2005)
  5. H. K. Vyas, A. J. Mawson, R. J. Bennett, and A. D. Marshall, 'A new method for for estimationg cake height and porosity during filtration of particulate suspensions', J. Membr. Sci., 176, 113 (2000) https://doi.org/10.1016/S0376-7388(00)00437-3
  6. S. K. Karode, 'Unsteady state flux response: a method to determine the nature of the solute and gel layer in membrane filtration', J. Membr. Sci., 188, 9 (2001) https://doi.org/10.1016/S0376-7388(00)00644-X
  7. M. Heran and S. Elmaleh, 'Microfiltration through an inorganic tubular membrane with high frequency retrofiltration', J. Membr. Sci., 188, 181 (2001) https://doi.org/10.1016/S0376-7388(01)00351-9
  8. J. Cakl, I. Bauer, P. Dolecek, and P. Mikulasek, 'Effect of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion', Desalination, 127, 189 (2000) https://doi.org/10.1016/S0011-9164(99)00204-0
  9. F. Meacle, A. Aunins, R. Thornton, and A. Lee, 'Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing', J. Membr. Sci., 161, 171 (1999) https://doi.org/10.1016/S0376-7388(99)00111-8
  10. K. Katsoufidou, S. G. Yiantsios, and A. J. Karabelas, 'A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling', J. Membr. Sci., 266, 40 (2005) https://doi.org/10.1016/j.memsci.2005.05.009
  11. 현상훈, '세라믹 멤브레인의 현황과 제법', 멤브레인, 3(1), 1 (1993)
  12. Q. Gan, J. A. Howell, R. W. Field, R. England, M. R. Bird, and M. T. McKechinie, 'Synergetic cleaning procedure for a ceramic membrane fouled by beer microfiltration', J. Membr. Sci., 155, 277 (1999) https://doi.org/10.1016/S0376-7388(98)00320-2
  13. N. Laitinen, D. Michaud, C. Piquet, N. Teilleria, A. Luonsi, E. Levanen, and M. Nystrom, 'Effect of filtration conditions and backflushing on ceramic membrane ultrafiltration of board industry wastewaters', Sep. Purifi. Techno., 24, 319 (2001) https://doi.org/10.1016/S1383-5866(01)00134-4
  14. J. Y. Park, S. J. Choi, and B. R. Park, 'Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment', Desalination, 202, 207 (2007) https://doi.org/10.1016/j.desal.2005.12.056
  15. M. Li, Y. Zhao, S. Zhoua, W. Xing, and F. Wong, 'Resistance analysis for ceramic membrane microfiltration of raw soy sauce', J. Membr. Sci., 299, 122 (2007) https://doi.org/10.1016/j.memsci.2007.04.033
  16. 김기열, 최돈복, 소명기, 'Silicon Wafer 위에 화학 증착된 Silicon Dioxide 박막에 관한 연구', 요업학회지, 27(2), 219 (1990)
  17. Z. Sadaoui, C. Azoung, G. Charbit, and F. Charbit, 'Surfactants for separation processes : enhanced ultrafiltration', J. Environ, Eng.-ASCE, 695 (1998)
  18. M. J. Rosen, 'Surfactants and Interfacial Phenomena', 2nd Ed., pp. 112-115, John Wiley and Sons, Inc., USA (1989)
  19. J. J. Hong, S. M. Yang, C. H. Lee, Y. K. Choi, and T. Kajiuchi, 'Ultrafiltration of Divalent Metal Cations from Aqueous Solution Using Polycarboxylic Acid Type Biosurfactant', J. Colloid and Interface Sci., 202, 63 (1998) https://doi.org/10.1006/jcis.1998.5446
  20. 백기태, 양지원, '계면활성제 미셀과 한외여과를 이용한 지하환경복원', 공업화학, 15(2), 153 (2004)
  21. 노상일, 이상봉, 조계민, 이영무, 심진기, '한외여과 공정에서 양쪽성 고분자 나노파티클을 이용한 오염물 제거', 멤브레인, 16(1), 59 (2006)
  22. M. Cheryan, 'Ultrafiltraion Handbook', pp. 89-93, Technomic Pub. Co., Pennsylvania (1984)
  23. 양현수, 한광희, 강덕원, 송명재, 김영호, '미셀형성을 이용한 한외여과막에서의 코발트(Co), 마그네슘(Mg) 이온제거', 화학공학, 34(4), 482 (1996)
  24. 안순철, 이광래, '계면활성제/금속이온 혼합용액의 한외여과막에 의한 카드뮴 구리 및 아연이온의 제거', 대한환경공학회지, 21(7), 1381 (1999)
  25. R. S. Juang, Y. Y. Xua, and C. L. Chen, 'Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration', J. Membr. Sci., 218, 257 (2003) https://doi.org/10.1016/S0376-7388(03)00183-2
  26. K. Back, H. H. Lee, and J. W. Yang, 'Micellarenhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate', Desalination, 158, 157 (2003) https://doi.org/10.1016/S0011-9164(03)00446-6
  27. K. Baek and J. W. Yang, 'Cross-flow micellar enhanced ultrafiltration for removal of nitrate and chromate: competitive binding', J. Hazard. Mater., B108, 119 (2004)
  28. K. Baek, B. K. Kim, H. J. Cho, and J. W. Yang, 'Removal characteristics of anionic metals by micellar-enhanced ultrafiltration', J. Hazard. Mater., B99, 303 (2003)