A Simplified Series-Parallel Structure for the RPPT (Regulated Peak Power Tracking) system

저궤도 인공위성용 Regulated Peak Power Tracking(RPPT) 시스템을 위한 단순화된 직-병렬 구조

  • 양정환 (서울대 전기컴퓨터공학부) ;
  • 배현수 (서울대 전기컴퓨터공학부) ;
  • 이재호 (서울대 전기컴퓨터공학부) ;
  • 조보형 (서울대 전기컴퓨터공학부)
  • Published : 2008.04.20

Abstract

The regulated peak power tracking (RPPT) systems such as the series structure and the parallel structure are commonly used in the satellite space power system. However, this structure processes the solar array power to the load through two regulators during one orbit cycle, which reduces the energy transfer efficiency. The series-parallel structure for the RPPT system can improve the power conversion efficiency, but an additional regulator increases the cost, size and weight of the system. In this paper, a simplified series-parallel space power system that consists of two regulators is proposed. The proposed system has the similar energy transfer efficiency with the series-parallel structure by adding one switch to the series structure, which reduces the cost, size and the weight. The large signal stability analyses is provided to understand the four main modes of system operation. In order to compare the energy efficiency with a series structure, the simulation is performed. The experimental verifications are performed using a prototype hardware with TMS320F2812 DSP and 200W solar arrays.

기존의 저궤도 인공위성 전력계 시스템에 사용된 직렬 구조, 병렬 구조는 공전 주기 동안 두 번의 전력변환 과정을 거쳐 시스템의 효율을 감소시킨다. 직-병렬 구조는 한 번의 전력변환 과정을 거쳐 시스템의 효율을 향상시키지만 레귤레이터가 추가됨으로써 시스템의 비용과 무게, 크기를 증가시킨다. 본 논문에서는 레귤레이터의 추가 없이 시스템의 효율을 향상시키는 단순화된 직-병렬 구조를 제안한다. 인공위성이 지구를 공전하는 동안 상황에 따라 변화하는 제안한 구조의 동작을 네 가지 모드로 분류하고, 각 모드마다 제안한 시스템을 안정적인 동작을 확인하기 위하여 대신호 분석을 수행하였다. 실험을 통하여 기존의 직렬구조와 제안한 구조의 효율을 비교하였다. 제안한 구조의 안정적인 동작을 검증하기 위해 200W급 태양전지와 TMS320F2812 DSP로 제어되는 100W급 전력조절기 두 모듈을 병렬로 구성하여 실험하였다.

Keywords

References

  1. Huynh, P., and B.H. Cho, "Design and Analysis of a Regulated Peak-Power Tracking System", IEEE Transactions on Aerospace and Electronics System, Vol. 35, No. 1, pp. 84-91, 1999, July https://doi.org/10.1109/7.745682
  2. Huynh, P., and B.H. Cho, "Analysis and Design of a Microprocessor Controlled Peak-Power Tracking System", IECEC, 1992
  3. 조보형, 인공위성 전력계 시스템 설계 및 모델링(III), 서울대학교 기초전력공동연구소(제 5차년도 연차 보고서), 1997 전력계 구조
  4. Hyunsu Bae, Jaeho Lee, Sanghyun Park and Bo Hyung Cho, "Large Signal Stability Analysis of the Solar Array Power System Using the Controlled Load Characteristic", IEEE Transactions on Aerospace and Electronics Systems, to be published
  5. B.H. Cho, and F.C. Lee, "Large Signal Stability Analysis of Spacecraft Power System", IEEE PESC, 1987
  6. H.S. Bae, J.H. Yang, J.H. Lee and Bo.H. Cho, "Digital state Feedback Control and Feed-Forward Compensation for a Parallel Module DC-DC Converter using the Pole Placement Technique", IEEE AEPC, to be published
  7. Johan H. R. Enslin, Mario S. Wolf, Daniel B. Snyman and Wernher Swiegers, "Integrated Photovoltaic Maximum Power Tracking Converter", IEEE Transactions on Industrial Electronics, Vol. 44, No. 6, pp. 769-773, 1997, Dec. https://doi.org/10.1109/41.649937
  8. Toshihiko Noguchi, Shigenori Togashi and Ryo Nakamoto,"Short-CurrentPulse-Based Maximum-Power-Point Tracking Method for Multiple Photovoltaic-and Converter Module System", IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, pp. 217-223, 2002, April https://doi.org/10.1109/41.982265
  9. Tsai-Fu Wu, Chien-Hsuan Chang and Yu-Kai Chen, "A Fuzzy-Logic-Controlled Single-Stage Converter for PV-Powered Lighting System Applications," IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 287-296, 2000, Feb. https://doi.org/10.1109/41.836344
  10. Weidong Xiao, Nathan Ozog and William G. Dunford, "Topology Study of Photovoltaic Interface for Maximum Power Point Tracking", IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1696-1704, 2007, June https://doi.org/10.1109/TIE.2007.894732
  11. Kimiyoshi Kobayashi, Hirofumi Matsuo ad Yutaka Sekine, "An Excellent Operating Point Tracker of the Solar-Cell Power Supply System", IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp. 495-499, 2007, April
  12. Tomonobu Senjyu, Tomiyuki Shirasawa and Katsumi Uezato, "A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor", Journal of Power Electronics, Vol. 2, No. 3, pp. 155-166, 2002, July
  13. Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo and Massimo Vitelli, "Optimization of Perturb and Observe Maximum Power Point Tracking Method", IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 963-973, 2005, July https://doi.org/10.1109/TPEL.2005.850975
  14. K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, "Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric condition," IEE Proc. Generation, Transission and Distribution, Vol. 142, No. 1, pp. 59-64, 1995, Jan. https://doi.org/10.1049/ip-gtd:19951577
  15. Jae Ho Lee, Hyunsu Bae and Bo hyung Cho, "Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size," 12th International Power Electronics and Motion Control Conference(EPE- PEMC2006), pp. 603-607, 2006, Aug.