Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching (Department of Electrical Engineering and Computer Science, University of Michigan) ;
  • Chuang, Chiao-Shun (Department of Photonics & Display Institute, National Chiao Tung University) ;
  • Nomura, Kenji (ERATO-SORST, JST, in Frontier Collaborative Research Center / Material and Structure Lab., Tokyo Institute of Technology) ;
  • Shieh, Han-Ping David (Department of Photonics & Display Institute, National Chiao Tung University) ;
  • Hosono, Hideo (ERATO-SORST, JST, in Frontier Collaborative Research Center / Material and Structure Lab., Tokyo Institute of Technology) ;
  • Kanicki, Jerzy (Department of Electrical Engineering and Computer Science, University of Michigan)
  • 발행 : 2008.12.30

초록

We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.

키워드

참고문헌

  1. A. Kuo, T. K. Won and J. Kanicki, Jpn. J. Appl. Phys. 47, 3362 (2008) https://doi.org/10.1143/JJAP.47.3362
  2. J.K. Jeong, H.-J. Chung, Y.-G. Mo and H.D. Kim, Information Display 9, 20 (2008) https://doi.org/10.1080/15980316.2008.9652047
  3. T. Sameshima, S. Usui and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986) https://doi.org/10.1109/EDL.1986.26372
  4. S. S. Kim, B. H. You, J. H. Cho, S. J. Moon, B. H. Berkeley and N.D. Kim, in SID Int. Symp. Digest (2008), p. 196
  5. R.A. Street and L.E. Antonuk, IEEE Circuit and Device Magazine 9, 39 (1993) https://doi.org/10.1109/101.200858
  6. H. Hosono, J. Non- Cryst. Solids 352, 851 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004) https://doi.org/10.1038/nature03090
  8. J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-J. Chung, M. Kim, B. S. Gu, J.-S. Park, Y.-G. Mo, H. D. Kim and H. K. Chung, SID Int. Symp. Digest (2008), p. 1
  9. J.-H. Lee, D.-H Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, C.-O Jeong, H.-S. Park, S.-Y. Kim, S.-K. Lim and S.-S. Kim, SID Int. Symp. Digest (2008), p. 625
  10. M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, N. Sekine, J. Non- Cryst. Solids 354, 2777 (2008) https://doi.org/10.1016/j.jnoncrysol.2007.10.083
  11. M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, IEEE Electron Device Lett. 28, 273 (2007) https://doi.org/10.1109/LED.2007.893223
  12. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Thin Solid Films 486, 38 (2005) https://doi.org/10.1016/j.tsf.2004.11.223
  13. T. Li, J. Kanicki, W. Kong, and F. L. Terry, J. Appl. Phys. 88, 5764 (2000) https://doi.org/10.1063/1.1290732
  14. G.D. Cody, B. Abeles, C. Wronski, C.R. Stephens and B. Brooks, Solar Cells 12, 221 (1985)
  15. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)
  16. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, New York, 1991), p.88
  17. S. Sherman, S. Wagner, R. A. Gottscho, Appl. Phys. Lett. 69, 3242 (1996) https://doi.org/10.1063/1.118023
  18. J. Kanicki, F.R. Libsch, J. Griffith and R. Polastre, J. Appl. Phys. 69, 2339 (1991) https://doi.org/10.1063/1.348716
  19. M.J. Powell and J.W. Orton, Appl. Phys. Lett. 45, 171 (1984) https://doi.org/10.1063/1.95158
  20. T.-C. Fung, C.-S. Chuang, B G. Mullins, K. Nomura, T. Kamiya, H.-P.D. Shieh, H. Hosono and J. Kanicki, IMID Digest (2008), p.1208
  21. R.E.I. Schropp, G.J.M. Brouwer and J.F. Verwey, J. Non-Cryst. Solids, 77&78, 511 (1985)
  22. R.E.I. Schropp, T. Franke and J.F. Verwey, J. Non- Cryst. Solids 90, 199 (1987) https://doi.org/10.1016/S0022-3093(87)80413-1
  23. J.D. Gallezot, S. Martin and J. Kanicki, Proc. IDRC (2001), p. 407
  24. M.C. Hamilton and J. Kanicki, IEEE J. Select. Topics Quantum Electron. 10, 840 (2004) https://doi.org/10.1109/JSTQE.2004.833972
  25. A. Rolland, J. Richard, J.-P. Kleider and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993) https://doi.org/10.1149/1.2221149
  26. C. Chen, T.-C. Fung, K. Abe, H. Kumomi and J. Kanicki, Proceeding of 66th Device Research Conference (2008), p. 151
  27. A. O. Harm, R.E.I. Schropp and J. F. Verwey, Phil. Mag. B 52, 59 (1985) https://doi.org/10.1080/13642818508243165
  28. C.-S. Chuang, T.-C. Fung, B G. Mullins, K. Nomura, T. Kamiya, H.-P.D. Shieh, H. Hosono and J. Kanicki, SID Int. Symp. Digest (2008), p.1215