DOI QR코드

DOI QR Code

Inhibitory Activities of Red Ginseng Acidic Polysaccharide in Platelet Aggregation

  • Lee, Whi-Min (College of Veterinary Medicine, Kyungpook National University) ;
  • Kamruzzaman, S.M. (College of Veterinary Medicine, Kyungpook National University) ;
  • Song, Yong-Bum (KT & G Central Research Institute) ;
  • Cho, Jae-Youl (School of Bioscience and Biotechnology, Kangwon National University) ;
  • Park, Hwa-Jin (College of Biomedical Science and Engineering, Inje University) ;
  • Rhee, Man-Hee (College of Veterinary Medicine, Kyungpook National University)
  • Published : 2008.03.31

Abstract

Red ginseng acidic polysaccharide (RGAP), isolated from Korean red ginseng (Panax ginseng C.A. Meyer), has been shown to have a variety of biological functions such as immunostimulating and anti-tumor activities. In the present study, we investigated whether RGAP inhibited ligand-induced platelet aggregation. The washed platelet-rich plasma was prepared from male SD rats with successive centrifugation. The platelets $(10^8/ml)$ were preincubated with 1 mM of $CaCl_2$ for 2 min either in the presence or in the absence of RGAP $(10{\sim}50\;{\mu}g/ml)$ and were stimulated with collagen (2.5 ${\mu}g/ml$) and thrombin (0.1 U/ml). RGAP dose-dependently inhibited thrombin-induced platelet aggregation with $IC_{50}$ value of $26.2{\pm}2.0$ ${\mu}g/ml$. In collagen-induced platelet aggregation, RGAP inhibited the reaction with an $IC_{50}$ value of $31.5{\pm}3.0\;{\mu}g/ml$. RGAP potently suppressed the intracellular calcium ion, which was stimulated by thrombin (0.1 U/ ml). Among mitogen-activated protein kinase (MAPK) subtypes, the extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK were analyzed in the present study. RGAP inhibited the phosphorylation of ERK2 and p38 MAPK, which was activated by collagen (2.5 ${\mu}g/ml$). Finally, these results suggested that besides saponin fraction, RGAP take an important role in the preventive effect of Korean red ginseng against cardiovascular disease such as thrombosis and atherosclerosis.

Keywords

References

  1. Maguire, P. B., Moran, N., Cagney, G. and Fitzgerald, D. J. : Application of proteomics to the study of platelet regulatory mechanisms. Trends Cardiovasc Med. 14, 207-220 (2004). https://doi.org/10.1016/j.tcm.2004.06.001
  2. Huo, Y. and Ley, K. : Adhesion molecules and atherogenesis. Acta Physiol Scand. 173, 35-43 (2001). https://doi.org/10.1046/j.1365-201X.2001.00882.x
  3. Lindemann, S. and Gawaz, M. : The active platelet: translation and protein synthesis in an anucleate cell. Semin Thromb Hemost. 33, 144-150 (2007). https://doi.org/10.1055/s-2007-969027
  4. Macaulay, I. C., Carr, P., Gusnanto, A., Ouwehand, W. H., Fitzgerald, D. and Watkins, N. A. : Platelet genomics and proteomics in human health and disease. J Clin Invest. 115, 3370-3377 (2005). https://doi.org/10.1172/JCI26885
  5. Lee, J. J., Jin, Y. R., Lim, Y., Hong, J. T., Kim, T. J., Chung, J. H. and Yun, Y. P. : Antiplatelet activity of carnosol is mediated by the inhibition of TXA2 receptor and cytosolic calcium mobilization. Vascul Pharmacol 45, 148-153 (2006). https://doi.org/10.1016/j.vph.2006.04.003
  6. Huo, Y. and Ley, K. F. : Role of platelets in the development of atherosclerosis. Trends Cardiovasc Med. 14, 18-22 (2004). https://doi.org/10.1016/j.tcm.2003.09.007
  7. Corti, R., Farkouh, M. E. and Badimon, J. J. : The vulnerable plaque and acute coronary syndromes. Am J Med 113, 668- 680 (2002). https://doi.org/10.1016/S0002-9343(02)01344-X
  8. Ruggeri, Z. M. and Mendolicchio, G. L. : Adhesion mechanisms in platelet function. Circ Res. 100, 1673-1685 (2007). https://doi.org/10.1161/01.RES.0000267878.97021.ab
  9. el-Daher, S. S., Eigenthaler, M., Walter, U., Furuichi, T., Miyawaki, A., Mikoshiba, K., Kakkar, V. V. and Authi, K. S. : Distribution and activation of cAMP- and cGMP-dependent protein kinases in highly purified human platelet plasma and intracellular membranes. Thromb Haemost. 76, 1063- 1071 (1996). https://doi.org/10.1055/s-0038-1650707
  10. Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. : Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br J Haematol 117, 664-675 (2002). https://doi.org/10.1046/j.1365-2141.2002.03479.x
  11. Radomski, M. W., Palmer, R. M. and Moncada, S. : Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2, 1057-1058 (1987).
  12. Liao, C. H., Tzeng, C. C. and Teng, C. M. : Cyclic AMP and cyclic GMP phosphodiesterase inhibition by an antiplatelet agent, 6-[(3-methylene-2-oxo-5-phenyl-5-tetrahydrofuranyl) methoxy)quinol inone (CCT-62). Eur J Pharmacol 349, 107- 114 (1998). https://doi.org/10.1016/S0014-2999(98)00181-2
  13. Yao, J., Zhu, Y., Sun, W., Sawada, N., Hiramatsu, N., Takeda, M. and Kitamura, M. : Irsogladine maleate potentiates the effects of nitric oxide on activation of cAMP signalling pathways and suppression of mesangial cell mitogenesis. Br J Pharmacol. 151, 457-466 (2007). https://doi.org/10.1038/sj.bjp.0707255
  14. Manns, J. M., Brenna, K. J., Colman, R. W. and Sheth, S. B. : Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases. Thromb Haemost. 87, 873-879 (2002). https://doi.org/10.1055/s-0037-1613099
  15. Gibbins, J. M. : Platelet adhesion signalling and the regulation of thrombus formation. J Cell Sci 117, 3415-3425. (2004) https://doi.org/10.1242/jcs.01325
  16. Rink, T. J., Sage, S. O.: Calcium signaling in human platelets. Annu Rev Physiol 52, 431-449 (1990). https://doi.org/10.1146/annurev.ph.52.030190.002243
  17. Smith, J. B., Selak, M. A., Dangelmaier, C. and Daniel, J. L. : Cytosolic calcium as a second messenger for collageninduced platelet responses. Biochem J 288, 925-929 (1992). https://doi.org/10.1042/bj2880925
  18. Gillis, C. N. : Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54, 1-8 (1997). https://doi.org/10.1016/S0006-2952(97)00193-7
  19. Attele, A. S., Wu, J. A. and Yuan, C. S. : Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58, 1685-1693 (1999). https://doi.org/10.1016/S0006-2952(99)00212-9
  20. Park, H. J., Rhee, M. H., Park, K. M., Nam, K. Y. and Park, K. H. : Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol. 49, 157-162 (1995). https://doi.org/10.1016/0378-8741(95)01317-2
  21. Kim, E. H., Park, J. D., Pyo, S. N. and Rhee, D. K. : Effects of non-saponin red ginseng components on multi-drug resistance. J Ginseng Res 31, 74-78 (2007). https://doi.org/10.5142/JGR.2007.31.2.074
  22. Kwak, Y. S., Shin, H. J., Song, Y. B., Kyung, J. S., Wee, J. J. and Park, J. D. : Effect of oral administration of red ginseng acidic polysaccharide on the tumor growth inhibition. J Ginseng Res 29, 176-181 (2005). https://doi.org/10.5142/JGR.2005.29.4.176
  23. Park, K. M., Kim, Y. S., Jeong, T. C., Joe, C. O., Shin, H. J., Lee, Y. H., Nam, K. Y. and Park, J. D. : Nitric oxide is involved in the immunomodulating activities of acidic polysaccharide from Panax ginseng. Planta Med. 67, 122- 126 (2001). https://doi.org/10.1055/s-2001-11508
  24. Shin, H. J., Kim, Y. S., Kwak, Y. S., Song, Y. B., Kyung, J. S., Wee, J. J. and Park, J. D. : A further study on the inhibition of tumor growth and metastasis by red ginseng acidic polysaccharide (RGAP). Natural Product Sci 10, 284-288 (2004).
  25. Lee, S. R., Park, J. H., Choi, K. J. and Kim, N. D. : Inhibitory effects of ginsenoside Rg3 on platelet aggregation and its mechanism of action. Korean J. Ginseng Sci. 21, 132-140 (1997).
  26. Kim, S. D., Park, S. K., Cho, J. Y., Park, H. J., Lim, J. H., Yun, H. I., Park, S. C., Lee, K. Y., Kim, S. K. and Rhee, M. H. : Surfactin C inhibits platelet aggregation. J Pharm Pharmacol. 58, 867-870 (2006). https://doi.org/10.1211/jpp.58.6.0018
  27. Laemmli, U. K. : Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680- 685 (1970). https://doi.org/10.1038/227680a0
  28. Park, H. J., Rhee, M. H., Park, K. M., Nam, K. Y. and Park, K. H. : Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol 49, 157-162 (1995). https://doi.org/10.1016/0378-8741(95)01317-2
  29. Roberts, D. E., McNicol, A. and Bose, R. : Mechanism of collagen activation in human platelets. J Biol Chem 279, 19421-19430. Epub 12004 Feb 19423 (2004). https://doi.org/10.1074/jbc.M308864200
  30. Farndale, R. W., Sixma, J. J., Barnes, M. J. and de Groot, P. G. : The role of collagen in thrombosis and hemostasis. J Thromb Haemost 2, 561-573 (2004). https://doi.org/10.1111/j.1538-7836.2004.00665.x
  31. Holmsen, H. : Significance of testing platelet functions in vitro. Eur J Clin Invest 24, 3-8 (1994). https://doi.org/10.1111/j.1365-2362.1994.tb02249.x
  32. Daniel, J. L., Dangelmaier, C. A., Selak, M. and Smith, J. B. : ADP stimulates IP3 formation in human platelets. FEBS Lett 206, 299-303 (1986). https://doi.org/10.1016/0014-5793(86)81000-6
  33. Rosado, J. A. and Sage, S. O. : The ERK cascade, a new pathway involved in the activation of store-mediated calcium entry in human platelets. Trends Cardiovasc Med 12, 229-234 (2002). https://doi.org/10.1016/S1050-1738(02)00161-5
  34. Borsch-Haubold, A. G., Kramer, R. M. and Watson, S. P. : Cytosolic phospholipase A2 is phosphorylated in collagenand thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem 270, 25885-25892 (1995). https://doi.org/10.1074/jbc.270.43.25885
  35. Mazharian, A., Roger, S., Maurice, P., Berrou, E., Popoff, M. R., Hoylaerts, M. F., Fauvel-Lafeve, F., Bonnefoy, A. and Bryckaert, M. : Differential Involvement of ERK2 and p38 in platelet adhesion to collagen. J Biol Chem 280, 26002- 26010 (2005). https://doi.org/10.1074/jbc.M414083200
  36. Roger, S., Pawlowski, M., Habib, A., Jandrot-Perrus, M., Rosa, J. P. and Bryckaert, M. : Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA2 receptor is required for ERK2 activation in collagen-induced platelet aggregation. FEBS Lett 556, 227-235 (2004). https://doi.org/10.1016/S0014-5793(03)01430-3
  37. Rosado, J. A. and Sage, S. O. : Role of the ERK pathway in the activation of store-mediated calcium entry in human platelets. J Biol Chem 276, 15659-15665 (2001). https://doi.org/10.1074/jbc.M009218200
  38. Garcia, A., Shankar, H., Murugappan, S., Kim, S. and Kunapuli, S. P. : Regulation and functional consequences of ADP receptor- mediated ERK2 activation in platelets. Biochem J. 404, 299-308 (2007). https://doi.org/10.1042/BJ20061584
  39. McNicol, A. and Jackson, E. C. : Inhibition of the MEK/ ERK pathway has no effect on agonist-induced aggregation of human platelets. Biochem Pharmacol 65, 1243-1250 (2003). https://doi.org/10.1016/S0006-2952(03)00069-8