고농도 감마 토코페롤 보충식이가 흡연에 노출된 쥐의 혈액 및 조직 비타민 E와 대사산물 농도에 미치는 영향

Effects of Gamma-Tocopherol (GT) Supplementation on Vitamin E Concentration in Cigarette Smoke (CS) Exposed Mice

  • 임윤숙 (경희대학교 생활과학대학 식품영양학과)
  • Im, Yun-Sook (Department of Food and Nutrition, College of Human Ecology, Kyunghee University)
  • 발행 : 2008.03.31

초록

흡연은 활성 산소/질소종의 생성을 증가시켜 체내 산화적 스트레스를 증가시키고 폐의 염증을 유발한다. 이는 흡연자들의 체내 항산화 영양소들의 감소와 밀접한 관계를 가지는 것으로 알려져 있다. 본 연구에서는 항산화, 항염증 기능을 가진 비타민 E 중 식이에 많이 포함되어 있는 GT를 이용하여 흡연에 의한 항산화, 항염증 작용을 알아보기 위한 선행 연구로 고농도의 GT 식이가 혈액과 간, 폐의 AT, GT농도와 이들의 대샤산물인 CEHC 농도에 미치는 영향에 대하여 알아보고자 실시하였다. 연구 결과 고농도 GT 식이는 체내 혈액과 간, 폐 조직에 GT를 축적시키고 G-CEHC의 배설을 증가시켰다. 흡연은 대조군의 혈액과 폐 AT 농도는 증가시켰지만, 고농도 GT군의 혈액과 폐의 GT농도와 간의 G-CEHC의 농도를 감소 시켰다. 이러한 변화는 흡연에 의한 산화적 스트레스 상태에서 각기 다른 기능을 가진 조직의 요구량에 따라, 폐의 이용률을 높이기 위해 혈액으로 운반되는 양을 증가시키고 폐로의 운반을 임시적으로 증가시켜 조직의 AT, GT 농도를 선택적으로 조절하고 GT의 생체 이용률의 증가 때문이라 사료된다. 하지만 정확한 기전에 대한 연구들이 부족한 실정이므로 고농도의 GT 식이가 흡연에 의해 유도된 체내 산화적 스트레스와 폐의 염증 반응에 긍정적인 효과를 알아보기 위한 후속 연구가 절설히 필요한 것으로 사료된다.

Cigarette smoke (CS) induces oxidative and nitrosative stress to the respiratory tract (RT) via both oxidants contained in CS and by CS-induced activation of RT inflammatory-immune pro-oxidant processes. CS exposure has been associated with reduced levels of plasma micronutrient antioxidants, in part due to an increased utilization and turnover of alpha-tocopherol (AT). It has been suggested that gamma-tocopherol (GT) may have an expanded spectrum of antioxidant activation compared to alpha-tocopherol (AT). In order to investigate effects of high GT supplementation as compared to AT, C57 BL/6 mice were fed control AT (35 mg/kg diet) or high GT (1,000 mg/kg diet) diet for 8-10 weeks and then exposed to 60 $mg/m^3$ CS, 6 hr/day for 3 days. AT and GT levels and their metabolites were measured at endpoints. High GT supplementation significantly reduced AT levels in plasma, liver and lung compared to AT. CS increased levels of AT and GT in plasma and lung of control AT group but decreased GT levels in lung of high GT supplemented group. Moreover, CS significantly decreased GT metabolite, gamma-CEHC. The results suggest that high GT supplementation have selective modulation of concentrations of vitamin E and its metabolite in plasma and lung but not in liver against in vivo CS exposure.

키워드

참고문헌

  1. 통계청. 2006년도 사회통계조사보고서; 2007
  2. Alberg A. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 2002; 180 (2): 121-137 https://doi.org/10.1016/S0300-483X(02)00386-4
  3. Yamaguchi Y, Haginaka J, Morimoto S, Fujioka Y, Kunitomo M. Facilitated nitration and oxidation of LDL in cigarette smokers. Eur J Clin Invest 2005; 35(3): 186-193 https://doi.org/10.1111/j.1365-2362.2005.01472.x
  4. Duthie SJ, Ross M, Collins AR. The influence of smoking and diet on the hypoxanthine phosphoribosyltransferase (hprt) mutant frequency in circulating T lymphocytes from a normal human population. Mutat Res 1995; 331(1): 55-64 https://doi.org/10.1016/0027-5107(95)00051-J
  5. Mezzetti A, Lapenna D, Pierdomenico SD, Calafiore AM, Costantini F, Riario-Sforza G, Imbastaro T, Neri M, Cuccurullo F. Vitamins E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis 1995; 112(1): 91-99 https://doi.org/10.1016/0021-9150(94)05403-6
  6. Ross MA, Crosley LK, Brown KM, Duthie SJ, Collins AC, Arthur JR, Duthie GG. Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking. Eur J Clin Nutr 1995; 49(11): 861-865
  7. Bolton-Smith C, Casey CE, Gey KF, Smith WC, Tunstall-Pedoe H. Antioxidant vitamin intakes assessed using a food-frequency questionnaire: correlation with biochemical status in smokers and non-smokers. Br J Nutr 1991; 65(3): 337-346 https://doi.org/10.1079/BJN19910094
  8. Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE. Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 1995; 62(6 Suppl): 1490S-1500S https://doi.org/10.1093/ajcn/62.6.1490S
  9. Frei B, Forte TM, Ames BN, Cross CE. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J 1991; 277(Pt 1): 133-138 https://doi.org/10.1042/bj2770133
  10. Handelman GJ, Packer L, Cross CE. Destruction of tocopherols, carotenoids, and retinol in human plasma by cigarette smoke. Am J Clin Nutr 1996; 63(4): 559-565 https://doi.org/10.1093/ajcn/63.4.559
  11. Schneider C. Chemistry and biology of vitamin E. Mol Nutr Food Res 2005; 49(1): 7-30 https://doi.org/10.1002/mnfr.200400049
  12. Murray ED, Jr., Wechter WJ, Kantoci D, Wang WH, Pham T, Quiggle DD, Gibson KM, Leipold D, Anner BM. Endogenous natriuretic factors 7: biospecificity of a natriuretic gamma-tocopherol metabolite LLU-alpha. J Pharmacol Exp Ther 1997; 282 (2): 657-662
  13. Behrens WA, Madere R. Alpha- and gamma tocopherol concentrations in human serum. J Am Coll Nutr 1986; 5(1): 91-96 https://doi.org/10.1080/07315724.1986.10720116
  14. Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN. gammatocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc Natl Acad Sci U S A 2000; 97(21): 11494-11499
  15. Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. Faseb J 2003; 17(8): 816-822 https://doi.org/10.1096/fj.02-0877com
  16. Brigelius-Flohe R, Traber MG. Vitamin E: function and metabolism. Faseb J 1999; 13(10): 1145-1155 https://doi.org/10.1096/fasebj.13.10.1145
  17. Wechter WJ, Kantoci D, Murray ED, Jr., D'Amico DC, Jung ME, Wang WH. A new endogenous natriuretic factor: LLU-alpha. Proc Natl Acad Sci U S A 1996; 93(12): 6002-6007
  18. Hattori A, Fukushima T, Yoshimura H, Abe K, Imai K. Production of LLU-alpha following an oral administration of gammatocotrienol or gamma-tocopherol to rats. Biol Pharm Bull 2000; 23(11): 1395-1397 https://doi.org/10.1248/bpb.23.1395
  19. Traber MG, Siddens LK, Leonard SW, Schock B, Gohil K, Krueger SK, Cross CE, Williams DE. Alpha-tocopherol modulates Cyp3a expression, increases gamma-CEHC production, and limits tissue gamma-tocopherol accumulation in mice fed high gamma-tocopherol diets. Free Radic Biol Med 2005; 38(6): 773- 785 https://doi.org/10.1016/j.freeradbiomed.2004.11.027
  20. Valacchi G, Vasu VT, Yokohama W, Corbacho AM, Phung A, Lim Y, Aung HH, Cross CE, Davis PA. Lung vitamin E transport processes are affected by both age and environmental oxidants in mice. Toxicol Appl Pharmacol 2007; 222(2): 227-234 https://doi.org/10.1016/j.taap.2007.04.010
  21. Podda M, Weber C, Traber MG, Packer L. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J Lipid Res 1996; 37(4): 893-901
  22. 통계청. 2006년 사망 및 사망원인통계결과; 2007
  23. Lee R, Galli F, Kelly FJ. Gamm-tocopherol metabolism and its relationship with alpha-tocopherol in humans. In: Packer L, Traber MG, Kraemer K, Frei B, editors. The antioxidant vitamins C and E. Champaign, IL: AOCS press; 2002. p.180-194
  24. Wagner JG, Jiang Q, Harkema JR, Ames BN, Illek B, Roubey RA, Peden DB. Gamma-tocopherol prevents airway eosinophilia and mucous cell hyperplasia in experimentally induced allergic rhinitis and asthma. Clin Exp Allergy 2008; 38(3): 501-511 https://doi.org/10.1111/j.1365-2222.2007.02855.x
  25. Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ. Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proc Natl Acad Sci U S A 1993; 90(5): 1771-1775
  26. Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN. gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci U S A 1997; 94 (7): 3217-3222
  27. Wagner JG, Jiang Q, Harkema JR, Illek B, Patel DD, Ames BN, Peden DB. Ozone enhancement of lower airway allergic inflammation is prevented by gamma-tocopherol. Free Radic Biol Med 2007; 43(8): 1176-1188 https://doi.org/10.1016/j.freeradbiomed.2007.07.013
  28. Gabriel HE, Liu Z, Crott JW, Choi SW, Song BC, Mason JB, Johnson EJ. A comparison of carotenoids, retinoids, and tocopherols in the serum and buccal mucosa of chronic cigarette smokers versus nonsmokers. Cancer Epidemiol Biomarkers Prev 2006; 15(5): 993-999 https://doi.org/10.1158/1055-9965.EPI-05-0664
  29. Jeanes YM, Hall WL, Proteggente AR, Lodge JK. Cigarette smokers have decreased lymphocyte and platelet alpha-tocopherol levels and increased excretion of the gamma-tocopherol metabolite gamma-carboxyethyl-hydroxychroman (gamma-CEHC). Free Radic Res 2004; 38(8): 861-868 https://doi.org/10.1080/10715760410001715149
  30. Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, Bray TM, Traber MG. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic Biol Med 2006; 40(4): 689-697 https://doi.org/10.1016/j.freeradbiomed.2005.10.051