DOI QR코드

DOI QR Code

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli.

HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사

  • Lee, Sang-Kyu (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine, the Catholic University) ;
  • Nam, Min-Kyung (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine, the Catholic University) ;
  • Kim, Goo-Young (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine, the Catholic University) ;
  • Rhim, Hyang-Shuk (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine, the Catholic University)
  • 이상규 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 남민경 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 김구영 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 임향숙 (가톨릭대학교 생명의과학과, 분자유전학연구소)
  • Published : 2008.04.30

Abstract

High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.

High-temperature requirement A2(HtrA2)는 대장균에서 42도 노출 시 세포 보호 기능을 하는 단백질인 HtrA의 human homologue로 동정되었다 현재까지 human HtrA2는 미토콘드리아에 존재하는 serine protaese로 세포사멸 기능에 관여하는 것으로 알려져 있으나, 그 생리적 기능 및 mammalian 세포 내에서 heat shock에 대한 보호기능에 대해서 명확히 알려진 바가 없다. 최근 HtrA2 유전자가 결실된 mouse embryonic fibroblast (MEF)가 보고되어 세포 내 HtrA2의 기능 연구가 가능해 졌으나, 이 세포에 대한 정보가 많은 부분 밝혀져 있지 않다. 생리기능연구를 위해서는 자체의 특성들에 대한 조사가 선행되어야 차후 기능연구가 가능할 것이다. 본 연구는 $HtrA2^{+/+}$, $HtrA2^{-/-}$ MEF 세포주를 확보하고, 두 세포주의 성장속도, 세포 형태 및, heat shock에 의한 세포사멸 정도를 측정하였다. 우선 $HtrA2^{+/+}$, $HtrA2^{-/-}$ MEF 세포주에서 HtrA2의 발현 유무를 PCR과 IB로 확인하였고, fractionation을 통해 $HtrA2^{+/+}$ 세포주에서만 HtrA2가 미토콘드리아에 위치함을 확인하였다. 두 세포에서 형태학적인 차이가 있음을 Coomassie staining으로 확인하였고, 성장속도 또한 $HtrA2^{-/-}$ 세포주가 1.4배 빠름을 확인하였다. 현재까지 보고되지 않은 HtrA2의 고온에 대한 반응연구를 위해 본 연구에서는 heat shock 자극에서 세포사멸을 측정하여, 기존에 알려진 세포사멸자극에서와 동일하게 heat shock에 의해서도 세포사멸이 야기됨을 확인하였다. $HtrA2^{+/+}$$HtrA2^{-/-}$ MEF 세포주를 이용한 연구에 있어, HtrA2 유무에 따른 세포의 생리학적 특징을 제공하였고, 향후 heat shock에 의한 세포사멸에서의 HtrA2 기능연구를 위한 중요한 기본 정보를 제공함으로써 HtrA2의 기능을 심도있게 연구하는데 사용할 수 있는 좋은 자료가 될 것이다.

Keywords

References

  1. Alam, M. and W. J. Schmidt. 2002. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav. Brain. Res. 136, 317-324 https://doi.org/10.1016/S0166-4328(02)00180-8
  2. Althaus, J., M. D. Siegelin, F. Dehghani, L. Cilenti, A. S. Zervos and A. Rami. 2007. The serine protease Omi/ HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion. Neurochem. Int. 50, 172-180 https://doi.org/10.1016/j.neuint.2006.07.018
  3. Baba, M., S. Nakajo, P. H. Tu, T. Tomita, K. Nakaya, V. M. Lee, J. Q. Trojanowski and T. Iwatsubo. 1998. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879-884
  4. Bonifati, V., P. Rizzu, M. J. van Baren, O. Schaap, G. J. Breedveld, E. Krieger, M. C. Dekker, F. Squitieri, P. Ibanez, M. Joosse, J. W. van Dongen, N. Vanacore, J. C. van Swieten, A. Brice, G. Meco, C. M. van Duijn, B. A. Oostra and P. Heutink. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259 https://doi.org/10.1126/science.1077209
  5. Cho, S. W., H. J. Park, G. Y. Kim, M. K. Nam,H. Y. Kim, I. H. KO, C. H. Kim and H. Rhim. 2006. Establishment of the expression system of human HtrA2 in the zebrafish. J. Life Science 16, 571-578 https://doi.org/10.5352/JLS.2006.16.4.571
  6. Cryns, V. and J. Yuan. 1998. Proteases to die for. Genes. Dev. 12, 1551-1570 https://doi.org/10.1101/gad.12.11.1551
  7. Dauer, W. and S. Przedborski. 2003. Parkinson's disease: mechanisms and models. Neuron 39, 889-909 https://doi.org/10.1016/S0896-6273(03)00568-3
  8. Deshmukh, M. and E. M. Johnson, Jr. 2000. Staurosporine-induced neuronal death: multiple mechanisms and methodological implications. Cell Death. Differ. 7, 250-261 https://doi.org/10.1038/sj.cdd.4400641
  9. Enaida, H., T. Hisatomi, Y. Hata, A. Ueno, Y. Goto, T. Yamada, T. Kubota and T. Ishibashi. 2006. Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina 26, 631-636 https://doi.org/10.1097/00006982-200607000-00007
  10. Faccio, L., C. Fusco,A. Chen, S. Martinotti, J. V. Bonventre and A. S. Zervos. 2000. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. The Journal of biological chemistry 275, 2581-2588 https://doi.org/10.1074/jbc.275.4.2581
  11. Goedert, M. 2001. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492-501 https://doi.org/10.1038/35081564
  12. Gray, C. W., R. V. Ward, E. Karran, S. Turconi, A. Rowles, D. Viglienghi, C. Southan, A. Barton, K. G. Fantom, A. West, J. Savopoulos, N. J. Hassan, H. Clinkenbeard, C. Hanning, B. Amegadzie, J.B. Davis, C. Dingwall, G. P. Livi and C. L. Creasy. 2000. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur. J. Biochem., 267, 5699-5710 https://doi.org/10.1046/j.1432-1327.2000.01589.x
  13. Guo, F., Y. Gao, L. Wang and Y. Zheng. 2003. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J. Biol. Chem. 278, 14414-14419 https://doi.org/10.1074/jbc.M300341200
  14. Han, Z., E. A. Hendrickson, T. A. Bremner and J. H. Wyche. 1997. A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J. Biol. Chem. 272, 13432-13436 https://doi.org/10.1074/jbc.272.20.13432
  15. Huttunen, H. J., S. Y. Guenette, C. Peach, C. Greco, W. Xia, D. Y. Kim, C. Barren, R. E. Tanzi and D. M. Kovacs. 2007. HtrA2 regulates beta-amyloid precursor protein (APP) metabolism through endoplasmic reticulum-associated degradation. J. Biol. Chem. 282, 28285-28295 https://doi.org/10.1074/jbc.M702951200
  16. Jones, J. M., R. L.Albin, E. L. Feldman, K. Simin, T. G. Schuster, W. A. Dunnick, J. T. Collins, C. E. Chrisp, B. A. Taylor and M. H. Meisler. 1993. mnd2: a new mouse model of inherited motor neuron disease. Genomics 16, 669-677 https://doi.org/10.1006/geno.1993.1246
  17. Jones, J. M., P. Datta, S. M. Srinivasula, W. Ji, S. Gupta, Z. Zhang, E. Davies, G. Hajnoczky, T. L. Saunders, M. L. Van Keuren, T. Fernandes-Alnemri, M. H. Meisler and E. S. Alnemri. 2003. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721-727 https://doi.org/10.1038/nature02052
  18. Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno and N. Shimizu. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
  19. Lipinska, B., O. Fayet, L. Baird and C. Georgopoulos. 1989. Identification, characterization, and mapping of the Escherichia coli HtrA gene, whose product is essential for bacterial growth only at elevated temperatures. J. Bacteriol. 171, 1574-1584 https://doi.org/10.1128/jb.171.3.1574-1584.1989
  20. Lipinska, B., M. Zylicz and C. Georgopoulos. 1990. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172, 1791-1797 https://doi.org/10.1128/jb.172.4.1791-1797.1990
  21. Martins, L. M., A. Morrison, K. Klupsch, V. Fedele, N. Moisoi, P. Teismann, A. Abuin, E. Grau, M. Geppert, G. P. Livi, C. L. Creasy, A. Martin, I. Hargreaves, S. J. Heales, H. Okada, S. Brandner, J. B. Schulz, T. Mak and J. Downward. 2004. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell Biol. 24, 9848-9862 https://doi.org/10.1128/MCB.24.22.9848-9862.2004
  22. Paisan-Ruiz, C., S. Jain, E. W. Evans, W. P. Gilks, J. Simon, M. van der Brug, A. Lopez de Munain, S. Aparicio, A. M. Gil, N. Khan, J. Johnson, J. R. Martinez, D. Nicholl, I. M. Carrera, A. S. Pena, R. de Silva, A. Lees, J. F. Marti-Masso, J. Perez-Tur, N. W. Wood and A. B. Singleton. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600 https://doi.org/10.1016/j.neuron.2004.10.023
  23. Paslaru, L., M. Morange and V. Mezger. 2003. Phenotypic characterization of mouse embryonic fibroblasts lacking heat shock factor 2. J. Cell Mol. Med. 7, 425-435 https://doi.org/10.1111/j.1582-4934.2003.tb00245.x
  24. Polymeropoulos, M. H., C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E. S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W. G. Johnson, A. M. Lazzarini, R. C. Duvoisin, G. Di Iorio, L. I. Golbe and R. L. Nussbaum. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045
  25. Ross, C. A. and M. A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-17 https://doi.org/10.1038/nm0104-10
  26. Seong, Y. M., J. Y. Choi, H. J. Park, K. J. Kim, S. G. Ahn, G. H. Seong, I. K. Kim, S. Kang and H. Rhim. 2004. Autocatalytic processing of HtrA2/Omi is essential for induction of caspase-dependent cell death through antagonizing XIAP. J. Biol. Chem. 279, 37588-37596 https://doi.org/10.1074/jbc.M401408200
  27. Skovronsky, D. M., V. M. Lee and J. Q. Trojanowski. 2006. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151-170 https://doi.org/10.1146/annurev.pathol.1.110304.100113
  28. Soti, C. and P. Csermely. 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem. Int. 41, 383-389 https://doi.org/10.1016/S0197-0186(02)00043-8
  29. Soto, C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49-60 https://doi.org/10.1038/nrn1007
  30. Spillantini, M. G., M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes and M. Goedert. 1997. Alpha-synuclein in Lewy bodies. Nature 388, 839-840 https://doi.org/10.1038/42166
  31. Strauss, K. M., L. M. Martins, H. Plun-Favreau, F. P. Marx, S. Kautzmann, D. Berg, T. Gasser, Z. Wszolek, T. Muller, A. Bornemann, H. Wolburg, J. Downward, O. Riess, J. B. Schulz and R. Kruger. 2005. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Human molecular genetics 14, 2099-2111 https://doi.org/10.1093/hmg/ddi215
  32. Sun, Y. L., Y. Zhao, X. Hong and Z. H. Zhai. 1999. Cytochrome c release and caspase activation during menadione- induced apoptosis in plants. FEBS. Lett. 462, 317-321 https://doi.org/10.1016/S0014-5793(99)01539-2
  33. Suzuki, Y., Y. Imai, H. Nakayama, K. Takahashi, K. Takio and R. Takahashi. 2001. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613-621 https://doi.org/10.1016/S1097-2765(01)00341-0
  34. Suzuki, Y., K. Takahashi-Niki, T. Akagi, T. Hashikawa and R. Takahashi. 2004. Mitochondrial protease Omi/ HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ. 11, 208-216 https://doi.org/10.1038/sj.cdd.4401343
  35. Tian, R., G. Y. Zhang, C. H. Yan and Y. R. Dai. 2000. Involvement of poly (ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS. Lett. 474, 11-15 https://doi.org/10.1016/S0014-5793(00)01561-1
  36. Valente, E. M., P. M. Abou-Sleiman, V. Caputo, M. M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A. R. Bentivoglio, D. G. Healy, A. Albanese, R. Nussbaum, R. Gonzalez-Maldonado, T. Deller, S. Salvi, P. Cortelli, W. P. Gilks, D. S. Latchman, R. J. Harvey, B. Dallapiccola, G. Auburger and N. W. Wood. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
  37. Wakabayashi, K., K. Tanji, F. Mori and H. Takahashi. 2007. The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27, 494-506 https://doi.org/10.1111/j.1440-1789.2007.00803.x
  38. Weissman, L., N. C. de Souza-Pinto, T. Stevnsner and V. A. Bohr. 2007. DNA repair, mitochondria, and neurodegeneration. Neuroscience 145, 1318-1329 https://doi.org/10.1016/j.neuroscience.2006.08.061
  39. Yang, Q. H., R. Church-Hajduk, J. Ren, M. L. Newton and C. Du. 2003. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes. Dev. 17, 1487-1496 https://doi.org/10.1101/gad.1097903
  40. Zimprich, A., S. Biskup, P. Leitner, P. Lichtner, M. Farrer, S. Lincoln, J. Kachergus, M. Hulihan, R. J. Uitti, D. B. Calne, A. J. Stoessl, R. F. Pfeiffer, N. Patenge, I. C. Carbajal, P. Vieregge, F. Asmus, B. Muller-Myhsok, D. W. Dickson, T. Meitinger, T. M. Strom, Z. K. Wszolek and T. Gasser. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005