DOI QR코드

DOI QR Code

Properties of the Membrane-Bound NADH;Menadione Oxidoreductase in the Aerobic Respiratory Chain of Bacillus cereus

Bacillus cereus의 호기적 호흡쇄에 있어서 세포질막 내에 존재하는 NADH;menadione oxidoreductase의 특성

  • Kang, Ji-Won (Department of Microbiology, Changwon National University) ;
  • Kim, Young-Jae (Department of Microbiology, Changwon National University)
  • 강지원 (창원대학교 자연과학대학 미생물학과) ;
  • 김영재 (창원대학교 자연과학대학 미생물학과)
  • Published : 2008.03.31

Abstract

Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase system exhibited an apparent $K_m$ value of approximately 65 ${\mu}M$ for NADH. On the other hand, the enzymatic properties of the NADH: menadione oxidoreductase of NADH oxidase system were examined. The maximum activity of NADH: menadione oxidoreductase was obtained at pH 9.5 in the presence of 0.1 M KCl (or NaCl). The NADH: menadione oxidoreductase activity was very resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$. Interestingly, the activity was stimulated by the 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO).

호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호홉쇄와 연계된 NADH oxidase계는 $K_m$ 값이 약 65 ${\mu}M$이였다. 한편, NADH oxidase계 중 NADH: menadione oxidoreductase의 효소학적 특성이 조사되었다. NADH: menadione oxidoreductase의 최고활성은 0.1 M KCl (또는 NaCl) 존재 하에서 pH 9.5에서 얻어졌다. NADH: menadione oxidoreductase의 활성은 rotenone, capsaicin, $AgN0_3$와 같은 호흡저해제에 매우 저항적이였다. 그러나 매우 흥미롭게도 NADH: menadione oxidoreductase의 활성은 HQNO (2-heptyl-4-hydroxyquinoline-N-oxide)와 같은 저해제에 의해서는 오히려 촉진되어 졌다.

Keywords

References

  1. Asano, M., M. Hayashi, T. Unemoto and H. Tokuda. 1985.$Ag^+$-sensitive NADH dehydrogenase in the $Na^+$-motive respiratory chain of the marine bacterium Vibrio alginolyticus. Agric. Biol. Chem. (Biosci. Biotechnol. Biochem.) 49, 2813-2817. https://doi.org/10.1271/bbb1961.49.2813
  2. Collins, M. D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316-354.
  3. Kim, S. S., Y. J. Kim and I. Rhee. 2001. Purification and characterization of anovel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175, 458-461. https://doi.org/10.1007/s002030100282
  4. Kim, S. S., Y. Park, J. Lee, J. Yoon, Y. Shin, I. Rhee and Y. J. Kim. 1998. Taxonomic studies of the beta hemolysis- causing pathogen Bacillus cereus isolated from sea water. J. Microbiol. Biotech. 8, 67-73.
  5. Kim, S. S., Y. Park, I. Rhee, and Y. J. Kim. 2000. Influence of temperature, oxygen, m-chlorophenylhydrazone, cerulenin, and quinacrine on the production of extracellular proteases in Bacillus cereus. J. Microbiol. Biotech. 10, 103-106.
  6. Kim, Y. J., S. Mizushima and H. Tokuda. 1991. Fluorescence quenching studies on the characterization of energy generated at the NADH: quinone oxidoreductase and quinol oxidase segments of marine bacteria. J. Biochem. (Tokyo) 109, 616-621. https://doi.org/10.1093/oxfordjournals.jbchem.a123429
  7. Kim, Y. J., K. Song and S. Rhee. 1995. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J. Bacteriol. 177, 5176-5178. https://doi.org/10.1128/jb.177.17.5176-5178.1995
  8. Matsushita, K., T. Ohnishi and R. Kaback. 1987. NADH: ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 26, 7732-7737. https://doi.org/10.1021/bi00398a029
  9. Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled $Na^+$ pump. Biochem. Biophys. Res. Commun. 114, 113-118. https://doi.org/10.1016/0006-291X(83)91601-7
  10. Tokuda, H. and T. Unemoto. 1984. $Na^+$ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 259, 7785- 7790.
  11. Yagi, T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy- coupling site 1 in various organisms. Arch. Biochem. Biophys. 281, 305-311. https://doi.org/10.1016/0003-9861(90)90448-8
  12. Yagi, T., T. Yano, S. D. Bernardo and A. Matsuno-Yagi. 1998. Procaryotic complex I (NDH-1), an overview. Biochim. Biophys. Acta 1364, 125-133. https://doi.org/10.1016/S0005-2728(98)00023-1
  13. Yagi, T., K. Hoh-nami and T. Ohnishi. 1988. Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB-8. Biochemistry 27, 2008-2013. https://doi.org/10.1021/bi00406a030