DOI QR코드

DOI QR Code

Study of Deep Ground Sea-Like Water on Antioxidant Activity and the Immune Response in RAW264.7 Macrophages.

천연 암반 심해수의 항산화 활성 및 면역반응에 대한 연구

  • 김유정 (신라대학교 의생명과학대학 식품영양학과) ;
  • 정일선 (신라대학교 의생명과학대학 식품영양학과) ;
  • 송효주 (신라대학교 의생명과학대학 식품영양학과) ;
  • 최은영 (신라대학교 의생명과학대학 생명과학과) ;
  • 최인순 (신라대학교 의생명과학대학 생명과학과) ;
  • 최영주 (신라대학교 의생명과학대학 식품영양학과)
  • Published : 2008.03.31

Abstract

Korean Deep ground sea-like water (KDSW) has a similar mineral composition with deep sea water. KDSW has demonstrated its usefulness and attracted in the medical fields. KDSW and Danasoo (desalted deep ground sea-like water) intake improve antioxidant, antidiabetic activity and immunity. Antioxidant activities of KDSW and Dnansoo were measured by using 2,2-diphenyl-l-picryl-hydrazyl (DPPH) free radical, superoxide dismutase-like activity (SODA) and photochemiluminescence (PCL). DPPH radical scavenging and SOD-like activities of KDSW and Danasoo were remarkably increased in a dose-dependent manner. Antioxidant activities of KDSW and Danasoo 85.32 and 14.02 nmol of ascorbic acid equivalent/ml KDSW and Danasoo, respectively, using the PCL method. Lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophages RAW264.7 cells was inhibited up to 30% by treatment with Danasoo (20%). NO is synthesized by the enzyme of nitric oxide synthase (NOS) and plays an important role tumor growth and angiogenesis. The anticancer effects of Danasoo on human gastric and lung cancer cells was performed by levels of inducible nitric oxide synthase (iNOS). Danasoo significantly reduced iNOS expression of human gastric cancer (SNU-l) and lung carcinoma (A549). The serum glucose level was significantly reduced by Danasoo (20%) diet in streptozotocin (STZ)-induced diabetic rats. These result suggest that KDSW has excellent biological activities and thus it has great potential as a source for natural health products.

해양성 심층수(KDSW)는 해양심층수(DSW)와 유사한 mineral 조성을 가지고 있어 식품 및 의약분야에서 그 유용성에 대한 관심이 증대되고 있다. 본 연구에서는 KDSW 및 탈염한 Danasoo의 항산화력, 면역활성, 함암 및 당뇨에 대한 효과를 연구하였다. KDSW와 Danasoo의 항산화 활성은 DPPH radical scavenging 활성, SOD-like 활성 및 PCL 법에 의하여 항산화 활성을 조사하였다. KDSW와 Danasoo의 항산화 활성은 첨가된 농도에 의존적으로 증가하였으며, 특히 PCL법에 의한 KDSW와 Danasoo의 항산화능은 85.32과 14.02(nmol of ascorbic acid equivalent/ml)로 높은 항산화 활성을 나타내었다. Macrophage RAW 264.7 cell에서 LPS에 의하여 유도된 NO 활성은 Danasoo (20%)를 첨가에 의하여 약 30%정도의 NO 합성이 저해되었으며, 이 농도에서 세포 독성이 없는 것으로 MTT assay에 의하여 확인하였다. NO는 nitric oxide synthase에 의하여 합성되며, tumor성장 및 angiogenesis에서 중요한 역할을 하는 것으로 밝혀져 있으며, Danasoon (20%)는 위암세포와 폐암세포의 iNOS 발현을 현저히 감소시켰다. STZ에 의하여 유도된 당뇨 쥐의 혈당량은 Danasoo (20%) 식이에 의하여 대조구와 유사한 당뇨효과를 나타내었다. 이러한 결과들은 KDSW가 우수한 biological 활성을 가지고 있으며, 또한 천연 기능성 제품생산을 위한 소재로 사용될 수 있는 높은 가능성올 시사하고 있다.

Keywords

References

  1. Bannister, J. V., W. H. Bannister and G. Rotilio. 1987. Aspects of the structure, function and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22, 111-180. https://doi.org/10.3109/10409238709083738
  2. Bakan, E., S. Taysi, M. F. Polat, S. Dalga, Z. Umudum, N. Bakan and M. Gumus. 2002. Nitric oxide levels and lipid peroxidation in plasma of patients with gastric cancer. Jpn. J. Clin. Oncol. 32, 162-166. https://doi.org/10.1093/jjco/hyf035
  3. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  4. Chen, G. G., T. W. Lee, H. Xu, J. H. Yip, M. Li, T. S. Mok and A. P. Yim. 2008. Increased inducible nitric oxide synthase in lung carcinoma of smokers. Cancer 112, 372-381. https://doi.org/10.1002/cncr.23166
  5. Dincer, Y., T. Akcay, O. B. Tortum and G. Dogusoy. 2006. Nitric oxide and antioxidant defence in patients with gastric cancer. Dig. Dis. Sci. 51, 1367-1370. https://doi.org/10.1007/s10620-005-9021-0
  6. Farias-Eisner, R., M. P. Sherman, E. Aeberhard and G. Chaudhuri. 1994. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc. Natl. Acad. Sci. 91, 9407-9411. https://doi.org/10.1073/pnas.91.20.9407
  7. Farvid, M. S., F. Siassi, M. Jalali, M. Hosseini and N. Saadat. 2004. The imoact of vitamin and/or mineral supplementation on lipid profiles in type 2 diabetes. Diabetes Res. and Clinical practices 63, 21-28.
  8. Gee, J. M. and I. T. Johnson. 2001. Phenolic compounds: Interactions with the gut and implications for human health. Curr. Med. Chem. 8, 1245-1255. https://doi.org/10.2174/0929867013372256
  9. Guzik, T. J., T. Korbut and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
  10. Ham, S. S., S. H. Kim, S. Y. Moon, M. I. Jeon, D. H. Oh and C. B. Cui. 2005. Antioxidative, antimutagenic and cytotoxic effects of the mineral water. Korean J. Food Hyg. 20, 53-57.
  11. Ignarro, L. J., J. M. Fukutto, J. M. Griscavage, N. E. Rogers and R. E. Byrns. 1993. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrite: Comparison with enzymatically formed nitric oxide form L-arginine. Proc. Natl. Acad. Sci. 90, 8103-8107. https://doi.org/10.1073/pnas.90.17.8103
  12. Inaba, H., T. Katsumata and K. Yasuda. 2001. Temporal variations of current and temperature at 300 m in Sutuga bay. JADOWA Deep Ocean Water Research 3, 15-19.
  13. Jayaprakasha, G. K., R. P. Singh and K. K. Sakariah. 2001. Antioxidant activity of grape seed (Vitis vinefera) extracts on peroxidation models in vitro. Food Chem. 73, 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3
  14. Jung, S. J., E. J. Joo, J. Y. Yoo, Y. K. Kim, Y. J. Cho, B. S. Yoon, J. K. Cho, K. T. Nam and S. G. Hwang. 2006. Effect of the supply of natural water from deep sea rock on the immune response and antioxidant activity in rats. Korean J. Anim. & Technol. 48, 211-218. https://doi.org/10.5187/JAST.2006.48.2.211
  15. Kim, H. J. 2000. Feasibility study for the multipurpose development of deep ocean water resource. Korean Ocean Research Lab. MOMAF report.
  16. Lenzen, S. 2008. The mechaniism of alloxan- and streptozotocin- induces diabetes. Diabetologia. 51, 216-226. https://doi.org/10.1007/s00125-007-0886-7
  17. Lin, H. Y., S. H. Juan, S. C. Shen, F. L. Hsu and Y. C. Chen. 2003. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochemical Pharmcology 66, 1821-1832. https://doi.org/10.1016/S0006-2952(03)00422-2
  18. Marklund, S. and G. Marklund. 1975. Involvement of superoxide aminoradical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 468-474.
  19. Makris, D. P. and J. T. Rossiter. 2001. Comparison of quercetin and non-orthohydroxy flavonoid as antioxidants by competing in vitro oxidation reactions. J. Agric. Food Chem. 49, 3370-3377. https://doi.org/10.1021/jf010107l
  20. Marletta, M. A. 1993. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268, 12231-12234.
  21. Matsuyama, K., Y. Serisawa and T. Nakashima. 2003. Effects of deep seawater on the growth of a green alga, Ulva sp. (Ulvophyceae Chlorophyta). Algae. 18, 129-134. https://doi.org/10.4490/ALGAE.2003.18.2.129
  22. Miyamura, M., S. Yoshioka, A. Hamada, D. Takuma, J. Yokota, M. Kusunose, S. Kyotani, H. Kawakita, K. Odani, Y. Tsutsui and Y. Nishioka. 2004. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 27, 1784-1787. https://doi.org/10.1248/bpb.27.1784
  23. Nakagawa, K., Y. Yokoyama, H. Nakajima and Y. Lkekami. 2000. Application of minerals in deep seawater. JADOWA Deep Ocean Water Research 1, 1-4.
  24. Nathan, C. 1992. Nitric oxide as a secretary product of mammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  25. Park, S. K., H. J. Lee, D. H. Kim, Y. K. Deung, E. J. Yang, S. J. Lim, Y. S. Ryang, H. W. Kim and K. J. Lee. 2005. The effect of deep ground water on blood pressure and sodium excretion. J. Exp. Biomed. Sci. 11, 275-279.
  26. Popov, I. and G. Lewin. 1999. Antioxidative homeostasis: characterization by means of chemiluminescent technique. Methods Enzymol. 300, 437-456. https://doi.org/10.1016/S0076-6879(99)00149-4
  27. Pryor, W. A. 1986. Oxy-radicals and related species: their formation, lifetimes and reactions. Ann. Rev. Physiol. 48, 657-667. https://doi.org/10.1146/annurev.ph.48.030186.003301
  28. Sacchetti, G., S. Maietti, M. Muzzoli, M. Scaglianti, S. Manfredini, M. Radice and R. Bruni. 2005. Comparative evaluation of 11 essential oils of diferent origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 91, 621-632. https://doi.org/10.1016/j.foodchem.2004.06.031
  29. Suzuki, H. 2000. Characteristics, utilization, and functionality of deep seawater. Food Research 7, 37-41.
  30. Takahashi, M. 2001. It knows and the deep sea water. Doseo Publication, Science and Technology 23, 35-37.
  31. Tsuchiya, Y., K. Nakamura and M. Yamamoto. 2002. Subacute effects of deep seawater from the Japan Sea on blood examination values in mice. Environ. Health Prev. Med. 7, 189-192. https://doi.org/10.1007/BF02898003
  32. Tsuchiya, Y., K. Nakamura and M. Yamamoto. 2003. Effects of hot deep seawater bathing on the immune cell distribution in peripheral blood from healthy young man. Environ. Health Prev. Med. 8, 161-165. https://doi.org/10.1007/BF02897909
  33. van der Veen, R. C. 2001. Nitric oxide and T cell immunity. Int. Immunophamacol. 1, 1491-1500. https://doi.org/10.1016/S1567-5769(01)00093-5
  34. Wink, D. A. and J. B. Mitchell. 2003. Nitric oxide cancer: an introduction. Free Radic. Biol. Med. 34, 951-954. https://doi.org/10.1016/S0891-5849(02)01362-X
  35. Yoshioka, S., A. Hamada, T. Cui, J. Yokota, S. Yamamoto, M. Kusunose, M. Miyamura, S. Kyotani, R. Kaneda, Y. Tsutsui, K. Odani, I. Odani and Y. Nishioka. 2003. Phamachological activity of deep-sea water: Examination of hyperlipemia prevention and medical treatment effect. Biol. Pharm. Bull. 26, 1552-1559. https://doi.org/10.1248/bpb.26.1552

Cited by

  1. Optical characteristics and photothermal conversion of natural iron oxide colloid vol.4, pp.1, 2013, https://doi.org/10.1186/2093-3371-4-20
  2. Quality characteristics of tofu coagulated by deep ground sea-like water vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.636
  3. Beneficial Effects of Desalinated Magma Seawater in Ameliorating Thioacetamide-induced Chronic Hepatotoxicity pp.1976-3816, 2019, https://doi.org/10.1007/s12257-018-0371-9