DOI QR코드

DOI QR Code

단백질 상호작용 데이터의 효율적 관리와 자동 갱신을 위한 시스템 설계와 구현

System Design and Implementation for the Efficient Management and Automatic Update of Protein-Protein Interaction Data.

  • 김기봉 (상명대학교 공과대학 생명정보공학과)
  • Kim, Ki-Bong (Department of Bioinformatics Engineering, Sangmyung University)
  • 발행 : 2008.03.31

초록

단백질 상호작용 관련 데이터들이 기하급수적으로 증가하고 있는데 그러한 데이터들을 수동으로 갱신하고 관리하는 작업은 엄청나게 많은 시간과 노력을 요구한다. 뿐만 아니라 개발자가 아닌 비전문가인 생물학자들이 시스템 구성 데이터베이스들을 갱신하고 관리하며 분석 시스템을 운영한다는 것은 현실적으로 거의 불가능하다. 이러한 측면에서 단백질 상호작용 정보를 이용한 효율적인 단백질 기능분석 시스템인 WASPIFA에 대해 자동적으로 데이터를 갱신하고 관리할 수 있는 시스템을 설계하고 개발하였다. WASPIFA 시스템은 단백질의 상호작용 관련 데이터들을 통합하여 사용자가 편리하게 데이터를 검색할 수 있으며 단백질 상호작용에 관련된 정보 즉, 기능 및 주석 정보, 도메인 정보, 도메인 간의 상호 작용 정보 등을 제공해 주는 유용한 단백질 기능분석 시스템이다.

This paper deals with an efficient management and automatic update sub-system for WASPIFA (Web-based Assistant System for Protein-protein Interaction and Function Analysis) system that had been developed in the past and now provides the comprehensive information on protein-protein interaction and protein function. Protein interacting data has increased exponentially, so that it costs enormous time and effort. In other words, it is actually impossible to manually update and manage an analysis system based on protein interacting data. Even though there exists a good analysis system, it could be useless if it was able to be updated timely and managed properly. Unfortunately, in most cases, biologists without professional knowledge on their analysis systems have to cope with a great difficulty in running them. In this respect, the efficient management and automatic update subsystem of protein interacting and its related data has been developed to facilitate experimental biologists as well as bioinformaticians to update and manage the WASPIFA system.

키워드

참고문헌

  1. Alfonso, V. and P. Florencio. 2002. Computational methods for the prediction of protein interactions. Current Opinion in Structural Biology 12, 368-373. https://doi.org/10.1016/S0959-440X(02)00333-0
  2. Gene Ontology Consortium. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258-D261. https://doi.org/10.1093/nar/gkh036
  3. Gilbert, D. 2005. Biomolecular interaction network database. Briefings in bioinformatics 6, 194-198. https://doi.org/10.1093/bib/6.2.194
  4. Jung, M., W. Park and K. B. Kim. 2004. Development of web-based assistant system for protein-protein interaction and function analysis. Journal of Life Science 14, 997-1002. https://doi.org/10.5352/JLS.2004.14.6.997
  5. Kim, K. B. 2007. A Study on the application methods of a support vector machine for gene promoter prediction. Journal of Life Science 17, 714-718. https://doi.org/10.5352/JLS.2007.17.5.714
  6. Mulder, N. J., R. Apweiler, T. K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns, M. Biswas, P. Bradley, P. Bork, P. Bucher, R. R. Copley, E. Courcelle, U. Das, R. Durbin, L. Falquet, W. Fleischmann, S. Griffiths-Jones, D. Haft, N. Harte, N. Hulo, D. Kahn, A. Kanapin, M. Krestyaninova, R. Lopez, I. Letunic, D. Lonsdale, V. Silventoinen, S. E. Orchard, M. Pagni, D. Peyruc, C. P. Ponting, J. D. Selengut, F. Servant, C. J. A. Sigrist, R. Vaughan and E. M. Zdobnov. 2003. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31, 315-318. https://doi.org/10.1093/nar/gkg046
  7. Quevillon, E., V. Silventoinen, S. Pillai, N. Harte, N. Mulder and R. Apweiler. 2005. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116-W120. https://doi.org/10.1093/nar/gki442
  8. Salwinski, L., C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie and D. Eisenberg. 2004. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449-D451. https://doi.org/10.1093/nar/gkh086
  9. Stark, C., B. J. Breitkreutz, T. Requly, L. Boucher, A. Breitkreutz and M. Tyers. 2006. BioGRID: a general repository for integration datasets. Nucleic Acids Res. 34, D535-D539. https://doi.org/10.1093/nar/gkj109
  10. Tatusov, R. L., N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V. Koonin, D. M. Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, S. Smirnov, A. V. Sverdlov, S. Vasudevan, Y. I. Wolf, J. J. Yin and D. A.Natale. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 1-14. https://doi.org/10.1186/1471-2105-4-1
  11. Wan, K. and P. Jong. 2002. Large Scale statistical prediction of protein-protein interaction by Potentially Interacting Domain (PID) pair. Genome Informatics 13, 42-50.