DOI QR코드

DOI QR Code

흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제

Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells.

  • 최주리 (동국대학교 한의과대학 내과학교실) ;
  • 신길조 (동국대학교 한의과대학 내과학교실) ;
  • 이원철 (동국대학교 한의과대학 내과학교실) ;
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 정승현 (동국대학교 한의과대학 내과학교실)
  • Choi, Ju-Li (Department of Oriental Medicine, Dongguk University) ;
  • Shin, Gil-Jo (Department of Oriental Medicine, Dongguk University) ;
  • Lee, Won-Chul (Department of Oriental Medicine, Dongguk University) ;
  • Moon, Il-Soo (Department of Anatomy, Dongguk University) ;
  • Jung, Seung-Hyun (Department of Oriental Medicine, Dongguk University)
  • 발행 : 2008.03.31

초록

Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

키워드

참고문헌

  1. Abramov, A. Y., A. Scorziello and M. R. Duchen. 2007. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129-1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007
  2. Asai, M., N. Iwata, A. Yoshikawa, Y. Aizaki, S. Ishiura, T, C. Saido and K. Maruyama. 2007. Berberine alters the processing of Alzheimer's amyloid precursor protein to decrease Abeta secretion. Biochem. Biophys. Res. Commun. 352, 498-502. https://doi.org/10.1016/j.bbrc.2006.11.043
  3. Bass, D. A., J. W. Parce, L. R. Dechatelet, P. Szejda, M. C. Seeds and M. Thomas. 1983. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910-1917.
  4. Benzi, G., O. Pastoris and M. Dossena. 1982. Relationships between gamma-aminobutyrate and succinate cycles during and after cerebral ischemia. J. Neurosci. Res. 7, 193-201. https://doi.org/10.1002/jnr.490070210
  5. Bernardi, P., K. M. Broekemeier and D. R. Pfeiffer. 1994. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26, 509-517. https://doi.org/10.1007/BF00762735
  6. Blomgren, K., C. Zhu, U. Hallin and H. Hagberg. 2003. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem. Biophys. Res. Commun. 304, 551-559. https://doi.org/10.1016/S0006-291X(03)00628-4
  7. Brewer, G. J., J. R. Torricelli, E. K. Evege and P. J. Price. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576. https://doi.org/10.1002/jnr.490350513
  8. Cai, J. and D. P. Jones. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome closs. J. Biol. Chem. 273, 11401-11404.
  9. Calabrese, V., G. Scapagnini, A. M. Giuffrida Stella, T. E. Bates and J. B. Clark. 2001. Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26, 739-764. https://doi.org/10.1023/A:1010955807739
  10. Cho, E. J., T. Yokozawa, S. H. Rhee and K. Y. Park. 2004. The role of Coptidis Rhizoma extract in a renal ischemia- reperfusion model. Phytomedicine. 11, 576-584. https://doi.org/10.1016/j.phymed.2003.07.005
  11. Dykens, J. A. 1994. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $CA^{2+}$ and $Na^+$ :implications for neurodegeneration. J. Neurochem. 63, 584-591. https://doi.org/10.1046/j.1471-4159.1994.63020584.x
  12. Fiskum, G., A. N. Murphy and M. F. Beal. 1999. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. Cereb. Blood Flow Metab. 19, 351-369. https://doi.org/10.1097/00004647-199904000-00001
  13. Fuh, Jr., S. J. Wang, E. B. Larson and H. C. Liu. 1996. Prevalence of stroke in kinmen. Stroke. 27, 1338-1341. https://doi.org/10.1161/01.STR.27.8.1338
  14. Hoe, J. 2003. Dong-Eui-Bo-Gam. pp. 1654, 2019, 2976. Yeogang Book publisher, Seoul.
  15. Hung, T. M., J. P. Lee, B. S. Min, J. S. Choi, M. Na, X. Zhang, T. M. Ngoc, I. Lee and K. Bae. 2007. Magnoflorine from coptidis rhizoma protects high density lipoprotein during oxidant stress. Biol. Pharm. Bull. 30, 1157-1160. https://doi.org/10.1248/bpb.30.1157
  16. Ingkaninan, K., P. Phengpa, S. Yuenyongsawad and N. Khorana. 2006. Acetylcholinesterase inhibitors from Stephania venosa tuber. J. Pharm. Pharmacol. 58, 695-700. https://doi.org/10.1211/jpp.58.5.0015
  17. Javadov, S. and M. Karmazyn. 2007. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol. Biochem. 20, 1-22. https://doi.org/10.1159/000103747
  18. Ji, H. J. and S. I. Lee. 1997. Hanyack-Gyugyuk-Juhea. pp. 153, Korean index Co., Seoul.
  19. Kim, H. C. 2001. Pharmacology of Korea. pp. 134-137, Jipmoondang, Seoul.
  20. Kim, H. G. 2000. Pharmacology of Korea. pp. 329-333, Korea medical publisher, Seoul.
  21. Kim, K. H., A. M. Rodriguez, P. M. Carrico and J. A. Melendez. 2001. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antioxid. Redox Signal. 3, 361-373. https://doi.org/10.1089/15230860152409013
  22. Kowaltowski, A. J., R. F. Castilho and A. E. Vercesi. 1995. $Ca^{2+}$-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269, 141-147. https://doi.org/10.1152/ajpcell.1995.269.1.C141
  23. Kowaltowski, A. J., R. F. Castilho and A. E. Vercesi. 1996. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of $CA^{2+}$ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 378, 150-152. https://doi.org/10.1016/0014-5793(95)01449-7
  24. Kowaltowski, A. J., L. E. Netto and A. E. Vercesi. 1998. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273, 12766-12769. https://doi.org/10.1074/jbc.273.21.12766
  25. Nakahara, I., H. Kikuchi, W. Taki, S. Nishi, M. Kito, Y. Yonekawa, Y. Goto and N. Ogata. 1992. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. Neurosurg. 76, 244-250. https://doi.org/10.3171/jns.1992.76.2.0244
  26. Poot, M. and R. C. Pierce. 1999. Detection of apoptosis and changes in mitochondrial membrane potential with chloromethyl-X-rosamine. Cytometry. 36, 359-360. https://doi.org/10.1002/(SICI)1097-0320(19990801)36:4<359::AID-CYTO12>3.0.CO;2-V
  27. Rogakou, E. P., W. Nieves-Neira, C. Boon, Y. Pommier and W. M. Bonner. 2000. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 275, 9390-9395. https://doi.org/10.1074/jbc.275.13.9390
  28. Sciamanna, M. A., J. Zinkel, A. Y. Fabi and C. P. Lee. 1992. Ischemic injury to rat forebrain mitochondria and cellular calcium homeostasis. Biochim. Biophys. Acta. 1134, 223-232. https://doi.org/10.1016/0167-4889(92)90180-J
  29. Shigeta, K., K. Ootaki, H. Tatemoto, T. Nakanishi, A.Inada and N. Muto. 2002. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by a Coptidis Rhizoma extract and protoberberine alkaloids. Biosci. Biotechnol. Biochem. 66, 2491-2494. https://doi.org/10.1271/bbb.66.2491
  30. Siesjo, B. K., E. Elmer, S. Janelidze, M. Keep, T. Kristian, Y. B. Ouyang and H. Uchino. 1999. Role and mechanisms of secondary mitochondrial failure. Acta Neurochir. Suppl. 73, 7-13.
  31. Silver, I. A. and M. Erecinska. 1992. Ion homeostasis in rat brain in vivo: intra- and extracellular $CA^{2+}$and $H^{+}$ in the hippocampus during recovery from short-term, transient ischemia. Cereb. Blood Flow Metab. 12, 759-772. https://doi.org/10.1038/jcbfm.1992.107
  32. Sims, N. R. and M. F. Anderson. 2002. Mitochondrial contributions to tissue damage in stroke. Neurochem. Int. 40, 511-526. https://doi.org/10.1016/S0197-0186(01)00122-X
  33. Sims, N. R. and W. A. Pulsinelli. 1987. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. Neurochem. 49, 1367-1374. https://doi.org/10.1111/j.1471-4159.1987.tb01001.x
  34. Starkov, A. A., C. Chinopoulos and G. Fiskum. 2004. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 36, 257-264. https://doi.org/10.1016/j.ceca.2004.02.012
  35. Wagner, K. R., M. Kleinholz and R. E. Myers. 1990. Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia. Neurol. Sci. 100, 142-151. https://doi.org/10.1016/0022-510X(90)90025-I
  36. Weinberg, J. M., M. A. Venkatachalam, N. F. Roeser and I. Nissim. 2000. Mitochondrial dysfunction during hypoxia/ reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl. Acad. Sci. USA 97, 2826-2831. https://doi.org/10.1073/pnas.97.6.2826
  37. Wingrave, J. M., K. E. Schaecher, E. A. Sribnick, G. G. Wilford, S. K. Ray, D. J. Hazen-Martin, E. L. Hogan and N. L. Banik. 2003. Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats. Neurosci. Res. 73, 95-104. https://doi.org/10.1002/jnr.10607
  38. Xu, W., L. Chi, B. W. Row, R. Xu, Y. Ke, B. Xu, C. Luo, L. Kheirandish, D. Gozal and R. Liu. 2004. Increased oxidative stress is associated with chronic intermittent hypoxia- mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neurosci. 126, 313-323. https://doi.org/10.1016/j.neuroscience.2004.03.055
  39. Xu, Y., K. K. Kiningham, M. N. Devalaraja, C. C. Yeh, H. Majima, E. J. Kasarskis and D. K. St. Clair. 1999. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 18, 709-722. https://doi.org/10.1089/104454999314999
  40. Yokozawa, T., A. Ishida, Y. Kashiwada, E. J. Cho, H. Y. Kim and Y. Ikeshiro. 2004. Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J. Pharm. Pharmacol. 56, 547-556. https://doi.org/10.1211/0022357023024
  41. Zaidan, E. and N. R. Sims. 1994. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. Neurochem. 63, 1812-1819. https://doi.org/10.1046/j.1471-4159.1994.63051812.x
  42. Zhu, F. and C. Qian. 2006. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci. 7, 78. https://doi.org/10.1186/1471-2202-7-78