과학적 사고에 관한 예비 과학교사의 개념 정교화 과정

The Process of Elaboration in Pre-service Science Teachers' Conceptions of Scientific Thinking

  • 발행 : 2008.12.30

초록

'과학적 사고의 신장'은 과학교육의 중요한 목표 중의 하나임에도 불구하고, 과학교사가 과학적 사고를 어떻게 개념화하는지에 대한 경험적 연구가 부족하다. 이에, 본 연구에서는 4명의 예비 중등 과학교사가 과학적 사고를 어떻게 정의하고, 토론에서 동료 상호작용을 통해 개인적 개념을 어떻게 정교해 가는지를 탐색하였다. 연구 결과로서 첫째, 과학적 사고에 대한 개인적 개념 스펙트럼을 제시하고 둘째, 소집단 및 전체 토론을 통해 가장 논쟁이 활발했던 세 가지 논제에 대하여 개념의 구성과 정교화 과정을 조명하였다. 과학적 사고와 관련된 세 가지 논제는 일상적 대 과학적 사고, 과학지식과 과학적 사고의 관계, 논리적 체계와 증거의 관계를 다룬다. 본 연구 결과를 토대로 예비 과학 교사교육에 대한 논의와 향후 연구에 대한 제언을 하였다.

Although the development of scientific thinking is one of the significant goals in science education in schools, there is a lack of empirical research on how science teachers conceptualize scientific thinking. This study explored how four pre-service secondary-level science teachers conceptualized scientific thinking and elaborated their conceptions through peer discussions. Results involved each pre-service teacher's conceptual spectrum of scientific thinking and showed the process of elaboration in their conceptions about three crucial issues in small-group or larger discussions. Three issues related to scientific thinking included everyday vs. scientific thinking, the relationship between science knowledge and scientific thinking, and the relationship between logical systems and evidence. Implications for pre-service science teacher education were discussed, and further research was suggested based on the results of this study.

키워드

참고문헌

  1. 강순민 (2004). 과학적 맥락의 논의 과제 해결 과정에서 나타나는 논의과정 요소의 특징. 한국교원대학교박사학위논문
  2. 교육과학기술부(2008). 중학교 교육과정 해설(III) : 수학, 과학, 기술가정. 한솔사: 광주광역시
  3. 김기우, 김용재 (역)(1992). 서사론 사전. 민지사
  4. 김만희 (2003). 폴라니의 인시론에 근거한 과학교수의 내러티브적 성격 고찰. 한국교원대학교 박사학위논문
  5. 김익균, 박승재 (1992). 대립개념의 증거적 비판논의와 반성적 사고를 중심으로 한 물리 개념변화 모형. 한국과학교육학회지, 12(3), 77-89
  6. 박승재, 장병기 (1994). 광학 현상 증거 해석의 인과적 추론 방식. 한국과학교육학회지, 14(2), 123-132
  7. 양일호 (2003). 과학적 지식 생성 과정에서 사전지식과 과학적 사고의 역할. 초등교과교육연구, 4, 51-65
  8. 오필석 (2007). 중등학교 지구과학 교사들의 과학적 살명: 논리적 형식과 담화적 특징 분석. 한국과학교육학회지, 27(1), 37-49
  9. 이선경 (2006). 소집단 토론에서 발생하는 학생들의 상호작용적 논증 유형 및 특징. 대한화학회지, 50(1), 79-88 https://doi.org/10.5012/jkcs.2006.50.1.079
  10. 조희형 (1992). 과학적 탐구의 본질에 대한 분석 및 탐구력 신장을 위한 학습지도 방법에 관한 연구. 한국과학교육학회지, 12(1), 61-73
  11. 한승희 (2005). 과학적 사고와 서사적 사고의 교육적 의미: 과학적 사고와 서사적 사고에서 추론과 정서. 교육과정연구, 23(2), 39-64
  12. Ahn, W. & Kalish, C. (2000). The role of mechanism beliefs in causal reasoning. In F. C. Keil & R. A. Wilson (Eds.), Explanation and Cognition (pp. 199- 226). Cambridge, MA: MIT Press
  13. Baram-Tsabari, A. & Yarden, A. (2005). Text genre as a factor in the formation of scientific literacy. Journal of Research in Science Teaching, 42(4), 403-428 https://doi.org/10.1002/tea.20063
  14. Brewer, W. F., Chinn, C. A., & Samarapungavan, A. (2000). Explanation in scientists and children. In F. Keil & R. Wilson (Eds.), Explanation and Cognition. Cambridge, MA: The MIT Press
  15. Bruner, J. S. (1986). Actual minds, Possible worlds. Harvard University Press
  16. Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613-642 https://doi.org/10.1002/tea.20157
  17. Dawson, C. & Rowell, J. (1987). The use of data in problem solving: The whys, whens and wherefores. Research in Science Education, 17, 1-10 https://doi.org/10.1007/BF02357166
  18. De Bono. (1996). de Bono's thinking course. London: BBC Books
  19. DeLoache, J. S., Miller, K. F., & Pierroutsakos, S. L. (1998). Reasoning and problem solving. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology (vol. 2): Cognition, perception, and language (pp. 801-850). Wiley: New York
  20. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312 https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  21. Flavell, J. H. (1976). Metacognitive aspects of problem solving. In Resnick, L. B. (ed.), The nature of intelligence. Hillsdale, 13, 199-217
  22. Gauld, C. (1986). Model, meters and memory. Research in Science Education, 16, 49-54 https://doi.org/10.1007/BF02356817
  23. Gunstone, R. F. (1994). The importance of specific science content in the enhancement of metacognition. In P. Fensham, R., Gunstone & R. White (Eds.), The content of science: A constructivist approach to its teaching and learning(pp. 131-146). Falmer Press: London
  24. Gunstone, R. F. & Northfield, J. (1992). Conceptual change in teacher education: The centrality of metacognition. Paper presented at the annual meeting of the American Educational Research Association. San Francisco: CA
  25. Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541-553 https://doi.org/10.1080/0950069890110506
  26. Hewson P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for Conceptual Change. In B. J. Fraser & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 199-218). Dordrecht, Netherlands: Kluwer
  27. Kuhn, D. (1992). Thinking as argument. Havard Educational Review, 62(2), 155-178
  28. Kuhn, D. (1993). Science argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337 https://doi.org/10.1002/sce.3730770306
  29. Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press
  30. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on reasoning. Cognition and Instruction, 15(3), 287-315 https://doi.org/10.1207/s1532690xci1503_1
  31. Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago University Press
  32. Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71-94 https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-C
  33. Lehrer, R., & Schauble, L. (2006). Scientific thinking and scientific literacy: Supporting development in learning contexts. In W. Damon, R. Lerner, K. A. Renninger & I. E. Sigel (Eds.), Handbook of child psychology: Vol. 4. Child psychology in practice (6th ed., pp. 153-196). Hoboken, NJ: John Wiley and Sons
  34. Millar, R. (1987). Towards a role for experiment in the science teaching laboratory. Studies in Science Education, 14, 109-118 https://doi.org/10.1080/03057268708559941
  35. Pritchard, C. L. (2005). Everyday and scientific thinking: How children adjust to contexts. Unpublished doctoral dissertation. University of Wisconsin-Madison
  36. Rief, F. & Larkin, J. (1991). Cognition in scientific and everyday domains: Comparison and learning implications. Journal of Research in Science Teaching, 38, 733-760
  37. Rozenblit, L. & Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 92, 1-42
  38. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536 https://doi.org/10.1002/tea.20009
  39. Scribner, S. (1986). Thinking in action: Some characteristics of practical thought. In R. J. Sternberg & R. Wagner (Eds.), Practical intelligence (pp. 13-30). Cambridge: Cambrideg University Press
  40. Sebeok, T. A. & Umiker-Sebeok, J. (1983). You know my method: A juxtaposition of Charles C. Peirce and Sherlock Holmes, In U. Eco & T. A. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 11-54). Bloomington: Indiana Univ. Press
  41. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press
  42. Tweney, R. D. (1991). Informal reasoning in science. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 3-16). Hillsdale, NJ: Erlbaum
  43. Wendel, W. B. (2002). Mixed signals: Rational choice theories of social norms and the pragmatics of explanation. Indiana Law Journal, 77(1), 1-62
  44. White, R. T. & Gunstone, R. F. (1989). Metacognition and conceptual change. International Journal of Science Education, 11, 577-586 https://doi.org/10.1080/0950069890110509
  45. Wilson, R. A. & Keil, F. C. (2000). The shadows and shallows of explanation. In F. C. Keil & R. A. Wilson (Eds.), Explanation and Cognition (pp. 87-114). Cambridge, MA: MIT Press
  46. Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99-149 https://doi.org/10.1006/drev.1999.0497