Seasonal Variations of Water Quality and Periphyton in the Cheonggyecheon

청계천의 수질과 부착조류의 계절적 변동

  • Shin, Myoung-Sun (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University) ;
  • Kim, Jai-Ku (Department of Environmental Science, Kangwon National University) ;
  • Park, Mi-Suk (Department of Environmental Science, Kangwon National University) ;
  • Jung, Seong-Min (Department of Environmental Science, Kangwon National University) ;
  • Jang, Chang-Won (Department of Environmental Science, Kangwon National University) ;
  • Shin, Yoon-Keun (Department of Environmental engineering, Sangji University) ;
  • Bae, Yeon-Jae (Devision of Environmental and Like Sciences, Seoul Women's University)
  • Published : 2008.03.31

Abstract

The seasonal variations of water quality and periphyton were investigated in an artificial stream (the Cheonggyecheon Stream) flowing through the Seoul City. TP showed a longitudinal gradient: 10 to $59{\mu}gP\;L^{-1}$ in the upper stream sites, and 15 to $90{\mu}gP\;L^{-1}$ in downstream sites. POP was a major form of TP in the water, occupying over 60%, while the proportion of DIP was less than 10% except for St. 4. N/P atomic ratio ranged from 78 to 554, which implies phosphorus would limit algal growth more than nitrogen. The biomass of periphyton did not show much difference among sites, and it was relatively higher in spring and fall season $(10\sim20{\mu}gChl\;{\alpha}cm^{-2})$ and lower in August $(<5{\mu}gChl\;{\alpha}cm^{-2})$, possibly because biofilms were washed off during spates of summer monsoon. Cyanobacteria was the dominant taxon in the periphyton community throughout the year. The periphyton standing crop can be classified as a nuisance level. It seems that phosphorus level is sufficiently high even though the input water is treated chemically, and modest water velocity $(20\sim90cm\;sec^{-1})$ and rocky bottom provide optimal conditions for periphyton growth.

청계천의 하도복원사업 이후 부착조류의 증식 실태와 영양염류 농도 등의 종적변이와 계절적 변화를 조사하였다. 조사기간은 복구된 직후인 2005년 12월부터 2007년 4월까지였으며, 영양염류와 부착조류 현존량, 물리적 요인 등이 조사되었다. 유속은 0.63m $sec^{-1}$에서 1.07m $sec^{-1}$의 변위를 보였으며, 부착조류의 현존량에 영향을 미치지 않는 것으로 관찰되었다. 총질소$(2.34{\pm}0.45mgN\;L^{-1})$는 계절이나 지점에 상관없이 농도의 변동이 없었으며, 총인$(10\sim90{\mu}gP\;L^{-1})$은 중랑천 합류 전 지점이 계절에 상관없이 가장 높은 농도를 나타냈고 중 상류 두 지점은 겨울에, 하류 두 지점은 여름에 높았다. 총인 농도 가운데 입자성유기인은 60% 이상을 차지하였으며, 중랑천 합류전 지점을 제외하고 용존무기인(DIP)은 10% 이내의 낮은 농도를 나타냈다. 부착조류의 현존량은 $0.3\sim48.6{\mu}gChl\;{\alpha}cm^{-2}$의 범위를 보였는데, 이는 타 연구 보고에 의하면 무척추동물의 생체량을 감소시킬 수 있을 정도의 높은 밀도이다. 부착조류 군집의 우점종은 대부분 남조류로서 부영양한 수역에서 나타나는 종들이 출현하였다. 청계천은 부착조류 종조성과 현존량으로 볼 때 부영양한 하천인 것으로 판정된다.

Keywords

References

  1. 국립환경과학원. 2003. 낙동강수계 수중생태계 수질모델인자 조사. p. 24-27
  2. 국립환경과학원. 2004. 낙동강수계 수중생태계 수질모델인자 조사(II). p. 31-37
  3. 국립환경과학원. 2006. 금강수계 수중생태계 수질모델인자 조사. p. 28-29
  4. 김명진. 2007. 생태하천 복원 방안. 환경영양평가지 16(1): 59- 68
  5. 김백호, 한명수. 2005. 청계천 생태기능 복원의 가치와 부착조류에 의한 수질관리 및 생태계관리. 원광대학교 환경과학연구소 13: 37-42
  6. 김용재. 2004. 한탄강의 돌 부착조류 군집의 시, 공간 동태 Algae 19(1): 15-22 https://doi.org/10.4490/ALGAE.2004.19.1.015
  7. 김정수, 구태희. 2005. 양재천에서 생태적 복원구간과 비복원 구간에 서식하는 조류군집의 비교. 한국환경복원녹화기술학회지 8(4): 1-11
  8. 김혜주. 2004. 청계천 수질 및 생태모니터링. 청계천 유역물순환 해석국제심포지움, 서울프레스센터
  9. 박명환, 황순진, 서미연, 김용재, 김백호. 2007. 조류성장잠재력 조사를 이용한 청계천 복원 이후 수질 평가. 육수지 40(2): 234-243
  10. 배경석, 서미연, 신진호, 길혜경, 신재영. 1999. 양재천의 수환경과 수서동물군집 특성. 한국환경위생학회지 25(4): 107- 117
  11. 신재기, 조경재. 1998. 대청천 부착조류의 1차 생산성. 육수지 31: 294-302
  12. 이삼희, 최정권. 2007. 안양천 도시하천 복원의 실행과 평가에 관한 연구. 한국환경보건녹화기술학회지 10(1): 1-8
  13. 이재연, 김자현, 배대열, 안광국. 2005. 양재천의 생태계 복원 구간 및 비복원 구간에서의 어류에 의거한 생물학적 특성 평가. 대한상하수도학회, 한국물환경학회 추계학술발표회 논문집
  14. 이진환. 2004. 강원도 동강의 수질과 식물플랑크톤 군집. Algae 19(3): 217-226 https://doi.org/10.4490/ALGAE.2004.19.3.217
  15. 최두형, 양재하, 전성천, 현윤정, 이강근, 김윤영. 2004. 청계천 유역의 지하수기초조사. 청계천 유역물순환 해석국제심포지움, 서울프레스센터
  16. 최민규, 김백호, 최환석, 이경보, 이덕배, 정연태. 1997. 섬진강 수계의 부착조류에 대한 생태학적 연구. Wonkwang J. Environ. Sci. 6: 1-27
  17. 최철만, 박연규, 문성기. 2004. 인공기질 부착조류에 의한 대천의 수질평가. Korean J. Environ. Biol. 22(1): 242-245
  18. 広瀬弘幸, 山岸高旺. 1977. 日本淡水藻圖鑑, 內田老鶴圃. 933p.
  19. Allan, J.D. 1995. Stream Ecology. Chapman & Hall, London, UK.
  20. APHA, AWWA and WEF. 1998. Standard methods for the examination of water and wastewater, 20th eds. American Public Health Association, Washington, DC.
  21. Bothwell, M.L. 1985. Phosphorus limitation of lotic periphyton growth rates: An intersite comparison using continuous- flow toughs (Thompson River System, British Columbia). Limnol. Oceanogr. 30: 527-542 https://doi.org/10.4319/lo.1985.30.3.0527
  22. Bothwell, M.L. 1988. Growth rate responses of lotic periphytic diatoms of experimental phosphorus enrichment: the influence of temperature and light. Can. J. Fish. Aquat. Sci. 46: 1293-301 https://doi.org/10.1139/f89-166
  23. Choi, J.S. and J. Chung. 1990. An assessment of water quality by epilithic diatoms of Namchun water system. Kor. J. Phycol. 5: 173-191
  24. Fjerdingstad, E. 1964. Pollution of streams estimated by benthal phytomicro organism. 1. A saprobic system on communities of organism and ecological factors. Int. Revue Hydro. Biol. 49: 63 https://doi.org/10.1002/iroh.19640490103
  25. Freeman, M.C. 1986. The role of nitrogen and phosphorus in the development of Cladophora glomerata (L.) Kutzing in the Manuwatu River, New Zealand. Hydrobiologia 31: 23-30
  26. Harper, D. 1992. Eutrophication of freshwaters: Principles, problems and restoration. Chapman & Hall, London. 327 p.
  27. Hartley, B. 1986. A cheak-list of fresh water, brackish and marine diatoms of the British Isles and adjoining Coastal Waters. J. Mar. Biol. Ass. U.K. 66: 531-610 https://doi.org/10.1017/S0025315400042235
  28. Hilsenhoff, W.L. 1988. Rapid field assessment of organic pollution with a family level biotic index. J. Nor. Amer. Benthol. Soc. 7: 65-68 https://doi.org/10.2307/1467832
  29. Horner, R.R. and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Can J. Fish Aquat. Sci. 38: 449-457 https://doi.org/10.1139/f81-062
  30. Horner, R.R., E.B. Welch, M.R. Seeley and J.M. Jacoby 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biol. (24): 215-232
  31. Hynes, H.B.N. 1970. The ecology of running waters. Univ. of Toronto Press, Toronto, Canada
  32. Lamberti, G.A. 1993. Grazing experiments in artificial streams. J. N. Am. Benthol. Soc. 12: 337-343
  33. Nordin, R.N. 1985. Water quality criteria for nutrients and algae (technical appendix). Water Quality Unit, Resources Quality Section, Water Management Branch, British Columbia Ministry of the Environment, Victoria, BC. (Available from: http://www.env.gov.bc.ca or Water Quality Section, BC Environment, PO Box 9340, Station Provincial Government, Victoria, BC V8W 9M1)
  34. Palmer, C.M. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5: 78-82 https://doi.org/10.1111/j.1529-8817.1969.tb02581.x
  35. Palmer, C.M. 1977. Algae and water pollution. Municipal environmental research laboratory office of research and development U.S. Environmental Protection Agency Cincinnati, Ohio. 124 p.
  36. Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. U.S. Environmental Protection Agency EPA/444/ 4-89-011, Washington D.C.
  37. Quinn, J.M. 1991. Guidelines for the control of undesirable biological growths in water. Consultancy Report No. 6213/2. National Institute of Water and Atmospheric Research. Hamilton, New Zealand
  38. Reynolds, C.S., V. Huszar, C. Kruk, L. Naselli-Flores and S. Melo. 2002. Journal of Plankton Research 24(5): 417- 428 https://doi.org/10.1093/plankt/24.5.417
  39. Traaen, T.S. and E.A. Lindström, 1983. Influence of current velocity on periphyton distribution, In: Periphyton of Freshwater Ecosystems (Wetzel, R.G., eds.). Developments in Hydrobiology 17: 97-99
  40. Walton, S.P. 1990. Effects of grazing by Dicosmoecus gilvipes (caddisfly) larvae and phosphorus enrichment on periphyton. MS thesis, University of Washington. Seattle
  41. Watanabe, T. 1977. Water pollution of Kanzaki river on Osaka prefecture and the diatom flora of the bottom mud on the river bed. Nara. Hydrobiol. 6: 27-25