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1. Introduction

In practical situations where there are rever

beration and propagation, the signal observed by 

digital microphones can be expressed by convolu

tions of the room impulse response and the original 

sources, and therefore the problem of blind source 

separation (BSS) is defined by finding the inverse 

filters of the room impulse responses：

x(/) = £a(z)s(Sz) ⑴

where x(d, s(f),呂，and A denote, respectively, the 

array of observation, the array of independent sources, 

time delay, and the invertible mixing filter matrix. To 

solve this problem of BSS, researchers have applied 

independent component analysis (ICA) with their 

extensions which model the spatio-temporal structure
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Abstract

An in甲rovement to the existing blind signal separation (BSS) method has been made in this paper. The proposed method models 

the inherent signal dependency observed in acoustic object to separate the real-world convolutive sound mixtures. The frequency 

domain approach requires s이ving the well known permutation problem, and the pro이em had been successfully solved by a vector 

representation of the sources whose multidimensional joint densities have a certain amount of dependency expressed by non-spherical 

distributions. Especially for speech signals, we observe strong dependencies across neighboring frequency bins and the decrease 

of those dependencies as the bins become fer apart. The non-spherical joint density model proposed in this paper reflects this property 

of real-world speech signals. Experimental results show the in車roved performances over the spherical joint density representations. 

Keywords: Blind source separation (BSS), independent component analysis (ICA), independent vector analysis (IVA), adaptive 

filtering.

of the convolutive mixing process [1] in order to 

separate the sources in the frequency domain.

Dealing w辻h the signals in the frequency domain 

has its advantage of increased performance since it 

can better handle longer filter lengths by reducing 

the convolved mixture problem to a set of instan

taneous ICA problems in all frequency bins,

xz[n] = [시, f = 1,2,…,d (2)

where /is frequency bin index, and(7 the number of 

frequency bins, or dimension. The integer variable 

n corresponds to a frame index of short-time Fourier 

transforms. For convenience, the time variables will be 

omitted since most ICA algorithms regard the pro

cess of each signal as i.i.d. samples of a random 

variable.

Although the separation of such instantaneous 

mixtures is easily obtained by complex ICA learning 

rules, there still remains grouping all frequency 

components of each source signal, known as a per

mutation problem [2,3]. There have been an
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extensive number of studies to solve this permutation 

problem. One approach is smoothing the frequency 

-domain filters [2], while some others used direction 

of arrival (DoA) information [3]. For colored signals, 

inter- frequency correlations of signal envelopes 

were used [4].

A fundamentally novel approach, called independent 

vector analysis (IVA), was taken to the frequency 

-domain convolutive BSS, which resulted in a robust 

solution for the permutation correction [5]. All the 

frequency components of a source were considered 

together as a multidimensional signal and hence, an 

objective function that measures the whole independence 

among multidimensional source was introduced. The 

IVA model consists of a set of basic ICA models as 

in Equation 2 where the univariate sources across 

different dimensions have some dependency such 

that they be grouped and aligned as a multidimen

sional variable, or simply vector. In Figure 1, the 

2x2 case IVA mixture model is depicted sb s2 

denote the multidimensional sources (月=何,]) 

and Xi，x2 the observed multidimensional mixtures 

(X,.=|了，对,...,；町').

So far, such IVA approaches applied to frequency 

-domain BSS have used probabilistic likelihood as 

their objective functions and have modeled frequency 

components of the sources as spherically symmetric 

joint densities,

Fig. 1. ICA is extended to a formulation with m니tidimensional 

variables (vectors), where the mixing process is con

strained to the sources on the same horizontal layer 

(dimension).

fjsjccexp 시乂. ⑶

where o is the term that adjusts the variance of the 

source variables.

Since speech signals are known to be spherically 

invariant random processes (SIRP) in the frequency 

domain, such assumption seems valid and also 

results in decent separation results. However, when 

compared to the result of conventional frequency 

domain ICA followed by perfect permutation co

rrection, the separation results of IVA using spherically 

symmetric joint densities are slightly inferior. This 

suggests that such source priors do not model speech 

perfectly and that the performance of IVA for speech 

separation can be improved by finding better depen

dency models. Here we propose a new type of non 

-spherical distributions for modeling the multidimensional 

variables in IVA.

2. Overlapped Subband Representation

for IVA
As an undirected graph, a spherical dependency 

model can be depicted as a total clique where all the 

line connections represent the same weight, or 

dependency. The undirected graph for a total clique 

is depicted in Figure 2-(a). In the case of speech 

signal, however, it seems unreasonable to assign 

same dependency to neighboring frequency coirponents 

and to frequency components that reside far apart, 

since the dependencies of neighboring frequency bins 

are supposed to be stronger than far ones, i.e., the 

dependency between M and s/+l, for arbitrary Z 

should be much stronger than those between 3 and 

s"

We propose partially spherical and symmetric 

model such that the dependency among the source 

components is propagated through chained overlaps 

of spherical dependencies, and as a result the de

pendency between components weakens with the 

distance becomes large. Such an example is drawn
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Fig. 2. Undirected graph representations for IVA dependency models. The connected lines of cliques represent fixed spherical 

dependencies, (a) A total clique displaying spherical dependency, (b) Chained cli이니es displaying the overlapped dependency. 

The dependency propagates via the chained overlaps and hence, the dependency between two components weakens with the 

increased distance.

as an undirected graph in Figure 2-(b). The corres

ponding multivariate probability density function (PDF) 

is given as

如s,)ccexp"b 修宓시이 ⑷

where d； and d［ are begin and end indices of clique 

k. Note that we have flexibility in modeling the size 

of each clique and also the size of overlaps, that is, 

the range 就,招 of clique k might have common 

frequency components with other cliques. In the actual 

implementation, we assign less than 50% overlaps 

with neighboring cliques.

With the proposed dependency model, a new IVA 

learning algorithm is derived by searching for a set 

of linear transformation matrices that make the com

ponents as statistically independent as possible between 

the cliques, obtained by maximizing log probability of 

the transformed sources, such that

/+}= arg I醪} log p({s,-】{w f })

=arg r蹒} »og f*,(s,)+Z log|det(W，］. ⑸

Performing gradient ascent on the data likelihood 

with natural gradient gives a rule for learning Wyfor 

each frequency index f,

辨사1-认矿)5厂］", (6)

where the score function 0(矿)is defined by

Lf\_ y 矿

， 况 心方"&니이' . ⑺

The unmixing matrix in every adaptation step was 

constrained to be orthogonal by using the following 

symmetric decorrelation scheme,

Wz / = 1, (8)

where the operator //represents Hermitian matrix 

transpose.

3. Experimental Results

We performed several separation experiments of 

2x2 speech mixtures in simulated environments. 

The sources are 8-second long real speech signals 

sampled at 8 kHz. The configurations are： 2048- 

point FFT, a Hanning window with the same length, 

and the shift size of 512 samples.

The geometric configuration of the simulated room 
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environment is depicted in Figure 3-(a). We set the 

room size to be 7 mX5 mX2.75 m and set all heights 

of the microphone and source locations to be 

identically 1.5 m. 100 ms was chosen as the reverbe

ration time and the corresponding reflection coefficients 

were set to be 0.57 for every wall, floor, and ceiling. 

Room impulse responses were obtained by an image 

method [6]. The real speech signals were convolved 

with the impulse responses that correspond to the 

locations of the sources and the microphones of each 

condition. The separation performance was measured 

by the signal to interference ratio (SIR) in dB which 

is defined as

SI” [dB] = 101。臥 直彳座弛삐亍 

二丿&《曲)回， ⑼

where q(i) indicates the separated source index 

that z-th source appears and is the overall 

impulse response which is defined as Z加机《，赤疝. 

The performances of 7 diverse source positions 

were investigated as 아lown in Figure 3—(b).

The performances of our new algorithms were 

compared to the conventional the maximum likelihood 

(ML) type IVA [5] using the joint PDF in Equation 

3. In order to focus on the effect of overlapped 

subband division only, the other conditions such as 

Equations (6) and (8) have been set to be the same.

The SIR results are shown in Table 1. IVA row is 

the SIR numbers of separation results by conventional 

IVA. In OSIVA—uniform, we use 4 equi-length cliques 

with 50% overlap in applying Equation 4. Their 

beginning and ending indices are： [1 326], [233 

559], [466 791], [698 1024] out of 1024 frequency 

bins. In OSIVA-mel, 4 mel-scaled cliques with 50% 

overlap, with the length and starting indices are 

increasing linearly. Their beginning and ending 

indices are： [1 172], [104 36이, [258 641], [488 

1024]. The other conditions such as using gradient 

descent optimization method (Equation 6), preopro- 

cessing the data to be zero-mean and white, and 

constraining the unmixing matrix to be orthogonal by 

symmetric decorrelation (Equation 8) have been 

kept the same.

Fig. 3. Simulated room environments, (a) Geometric configu

rations of simulated environments. 2 microphones were 

placed 6cm apart, and one source signal is placed at 

1.5m from the center of the two microphones, and 

the other source is at 2.0m. (b) 7 different combi- 

nations of s。니「ce signals. One 1.5m distant source and 

another 2.0m distant so니rce with various incidence 

angles were mixed to generate 2-dim input mixture 

signals.

Exp. # 1 2 3 4 5 6 7

Source Locations A, I B,G E.G I.K C,D E.F I,J

Table 1. Separation performances (SIR-out in dB). IVA is the 

convention기 ML-type IVA BSS using the source 

prior in Equation 3. The proposed method con

sistently outperformed the conventional IVA in terms 

아 SIR. Especially OSIVA-mel, using mel-scaled clique 

sizes, was better than OSIVA-uniform, 나sing equi- 

sized cliques.

Exp. # 1 2 3 4 5 6 7

IVA 16.2 17.0 16.3 11.7 15.2 14.9 14.9

OSIVA-uniform 19.0 17.7 19.0 14.8 17.1 18.9 18.1

OSIVA-mel 22.4 19.5 19.3 14.9 17.2 19.1 18.3

4. Conclusions

Mod이in흉 the frequency dependencies of speech 

signals in a more accurate manner leads to a more 

appropriate representation. This representation is 

captured by the vector representation of the multi-
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dimensional source and the non-spherical density 

model. Our current non-spherical model favors chained 

signal dependency. However, due to the graphical 

representation it is possible to extend this approach 

to other forms of dependencies. The impact of this 

approach could be far more significant for natural 

signals where complex multidimensional signal depen

dencies are essential.
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