3D-QSAR Analysis on the Photosystem II Inhibition Activity of 6-Bromobenzo[4,5]imidazo[$1,2{\alpha}$]pyridin-8,9-dione Analogues

6-Bromobenzo[4,5]imidazo[$1,2{\alpha}$pyridin-8,9-dione 유도체들의 Photosystem II 저해활성에 관한 3D-QSAR 분석

  • Kim, Se-Gon (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Cho, Yun-Gi (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hwang, Tae-Yeon (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 김세곤 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 조윤기 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 황태연 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2008.03.31

Abstract

3D-QSAR on the inhibitory activities of 6-bromobenzo-[4,5]imidazo[$1,2{\alpha}$]-pyridin-8,9-diones analogues as substrate molecule were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of CoMFA model was better predictability and fitness than CoMSIA model. The inhibitory activities according to the optimized CoMFA 2 model were dependent on the steric field (90.4%). From the CoMFA contour maps, it is found that the branched side chain as R-group will be directly attached to the carbon atom (ipso carbon) of substituent, the inhibitory activities had expected to increase. The positive charge favor groups were placed in the position between imidazol ring and pyridine ring, the inhibitory activities would increase. And if the groups of liner type will be substituted, hydrophilic favor group would raise inhibitory activities.

기질 분자로서 6-bromobenzo-[4,5]imidazo[$1,2{\alpha}$]pyridin-8,9-diones 유도체의 photosystem II의 저해활성에 관한 3차원적인 정량적 구조와 활성과의 관계(3D-QSARs)들을 비교 분자장분석(CoMFA)과 비교분자 유사성 지수분석(CoMSIA) 방법으로 각각 검토하였다. CoMFA 모델은 CoMSIA 모델보다 높은 예측성과 상관성을 갖는 모델이었다. 또한 최적화된 CoMFA 2 모델의 기여도는 입체장(90.4%)에 가장 의존적이었다. CoMFA 등고도 분석으로부터, 치환기(R)로서 모체로 연결되는 탄소원자(ipso carbon)에 곁가지를 가진 치환체가 도입될수록 저해활성이 증가할 것으로 보인다. 또한, imidazol 고리와 pyridine 고리 사이의 위치에 양하전을 가질수록 활성이 높을 것으로 예상되며 친수성을 띄는 선 형태의 치환기가 도입되는 경우에 활성이 개선될 것으로 판단되었다.

Keywords

References

  1. Apostolova, E., T. Markova, T. Filipova and M. T. Molina (2003) Influence of substituted 1,4-anthraquinones on the chlorophyll fluorescence and photochemical activity of pea thylakoid membranes, J. Photochem. Photobiol. B Biology. 70:75-80 https://doi.org/10.1016/S1011-1344(03)00057-5
  2. Dudekula, S., M. Fragata (2006) Investigation of the electron transfer site of p-benzoquinone in isolated Photosystem II particles and thylakoid membranes using $\alpha$ and $\beta$-cyclodextrins, J. Photochem. Photobiol. B; Biology. 85:177-183 https://doi.org/10.1016/j.jphotobiol.2006.07.003
  3. Folkers, G., A. Merz and D. Rognan (1993) In 3D-QSAR in Drug Design. CoMFA: Scope and Limitations. (Kubinyi, H. ed.), ESCOM, Leiden. pp. 583-618
  4. Hiraki, M., W. J. Vredenberg, van J. J. Rensen and Ko. Wakabayashi (2004) A modified fluorometric method to quantify the concentration effect ($pI_{50}$) of photosystem, Pestic. Biochemi. Physiol. 80:183-191 https://doi.org/10.1016/j.pestbp.2004.07.006
  5. Krivanek, R., J. Kern, A. Zouni, H. Dau and M. Haumann (2007) Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus, Biochimica et Biophysica Acta. 1767:520-527 https://doi.org/10.1016/j.bbabio.2007.02.013
  6. Loll, B., J. Kern, W. Saenger, A. Zouni and J. Biesiadka (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II Nature. 438:1040-1044 https://doi.org/10.1038/nature04224
  7. Man, X., A. Zhang, S. Han and L. Wang (2002) Studies of 3D-Quantitative Structure-Activity Relationships on a set of nitroaromatic compounds: CoMFA, advanced CoMFA and CoMSIA, Chemosphere. 48:707-715 https://doi.org/10.1016/S0045-6535(02)00165-0
  8. McConnell, I. L., M. R. Badger, T. Wydrzynski and W. Hillier (2007) A quantitative assessment of the carbonic anhydrase activity in photosystem II, Biochimica Biophysica Acta. 1767:639-647 https://doi.org/10.1016/j.bbabio.2007.01.019
  9. Oettmeier, W. (1999) Herbicide resistance and supersensitivity in photosystem II, CMLS Cellular and Molecular Life Sciences, 1256-1277
  10. Oettmeier, W., J. Jager and K. Masson (2006) Inhibition of photosystem II electron transport by acyl derivatives of 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid), Biochimica et Biophysica Acta. 1757:727-729 https://doi.org/10.1016/j.bbabio.2006.05.009
  11. Oettmeier, W., K. Masson and H. J. Hecht (2001) Heterocyclic ortho-quinones, a novel type of Photosystem II inhibitors, Biochimica et Biophysica Acta. 1504:346-351 https://doi.org/10.1016/S0005-2728(00)00263-2
  12. Okubo, T., T. Noguchi (2007) Selective detection of the structual change upon photoreactions of several redox cofactors in Photosystem II by means of light-induces ATR-FTIR difference spectroscopy, Spectrochimica Acta Part A. 66:863-868 https://doi.org/10.1016/j.saa.2006.05.001
  13. Rochaix, J. D. (2007) Role of thylakoid protein kinases in Photosynthetic acclimation, FEBS Letters. 581:2768-2775 https://doi.org/10.1016/j.febslet.2007.04.038
  14. Reddy, M. R. and A. L. Parrill (1999) Overview of rational drug design. In Rational Drug, (ed. Eddy, M. R. and Parrill). Ch. 1., ACS Symposium Series. 719:1-11
  15. Reil, E., G. Hofle, W. Draber and W. Oettmeier (2001) Quinones and their N-oxides as inhibitors of photosystem II and the cytochrome $b_6/f$-complex. Biochimica et Biophysica Acta. 1506:127-132 https://doi.org/10.1016/S0005-2728(01)00189-X
  16. Roberts, A. G., W. Gregor, R. D. Britt and D. M. Kramer (2003) Acceptor and donor-side interactions of phenolic inhibitors in Photosystem II. Biochimica et Biophysica Acta. 1604:23-32 https://doi.org/10.1016/S0005-2728(03)00021-5
  17. Sung, N. D., M. K. Soung, J. W. You and S. C. Jang (2006) Comparative molecular field analysis on the fungicidal activity of N-phenylthionocarbamate derivatives based on different approaches. Korean J. Pestic. Sci. 10:157-164
  18. Vasil'ev S., G. W. Brudvig and D. Bruce (2003) The X-ray structure of photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation. $Chl_Z^+$, FEBS Letters. 543:159-163 https://doi.org/10.1016/S0014-5793(03)00442-3
  19. Wold, S., E. Johansson and M. Cocchi (1993) In 3D-QSAR in Drug Design. PLS: Parti al Least-Squares Projections to Latent Structures. (Kubinyi, H. ed.), ESCOM, Leiden. pp. 523-554
  20. Zhu, X. G., Govindjee, N. R. Baker, E. Desturler, D. R. Ort and S. P. Long (2005) Chlorophyll $\alpha$ fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta. 223:114-133 https://doi.org/10.1007/s00425-005-0064-4