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INEQUALITIES FOR CHORD POWER INTEGRALS

GE XIONG AND XIAOGANG SONG

ABSTRACT. For convex bodies, chord power integrals were introduced
and studied in several papers (see [3], [6], [14], [15], etc.). The aim of
this article is to study them further, that is, we establish the Brunn-
Minkowski-type inequalities and get the upper bound for chord power
integrals of convex bodies. Finally, we get the famous Zhang projection
inequality as a corollary. Here, it is deserved to mention that we make
use of a completely distinct method, that is using the theory of inclusion
measure, to establish the inequality.

1. Preliminaries

The setting for this paper is n-dimensional Euclidean space R"™. We will
denote by convez figure a compact convex subset of R", and by convez body a
convex figure with nonempty interior. Let S®~1 denote the unit sphere centered
at the origin o in R", and write @,y for the (n — 1)-dimensional volume of
S7=1. Let B, be the closed unit ball in R™, write w,, for the n-dimensional
volume of B,,. Note that

Wn = 2 ! = nw
n TLF(%)7 n—1 n

By a direction, we mean a unit vector, that is, an element of S"~1. If u is a
direction, we denote by ut the (n — 1)-dimensional subspace orthogonal to u
and by [, the line through the origin parallel to u.

Denote by AG; . the affine Grassmann manifold of i-dimensional planes in
R™. Tt is a homogeneous space under the action of the motion group G(n)
(see [7], p.199). Let d&; be the normalized invariant measure of AG; ,, whose
restriction to the Grassmann manifold G; ,, is the invariant probability measure.
Let & be a random line intersecting K. Then voly (K N &) is the chord length
of the intersection K N &;. The chord power integrals of K are defined by

200, _
LK) = 2 1/5 L oh(KN6)'E,0 < A< oo,
1€ 1,n

n
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Here the normalization says that

/ dE1 = .
B,.Né1#2

Chord power integrals are generalizations of the surface area S(K) and the
volume V (K) of convex body K. There are several interesting integral formulas
for chord power integrals (see [7]):

Wn—1

Io(K) = LS (K),
L(K) = 2LV (K),

L (K) = (n + DV(K)®.

Also, chord power integrals have strong relations with inclusion measure of
convex body. Let G(n) be the group of rigid motions in R*. Each element,
g:R* — R”, of G(n) can be represented by

g:x —rexr+b,

where b € R® and e is an orthogonal matrix of determinant 1. Let p be the
Haar measure on G(n) normalized as follows: Let ¢ : R* x SO(n) — G(n) be
defined by ¢(t,e)z = ex + t,z € R™, where SO(n) is the rotation group of R™.
If v is the unique invariant probability measure on SO(n), 5 is the Lebesgue
measure on R”, then y is chosen as the pull back measure of  ® v under ¢~1.

The inclusion measure of a convex figure L contained in a convex body K

is defined by

mg (L) =m(L C K) = dp(g)
{9€G(n):gLCK}
It gives the measure of the set of copies congruent to convex figure L contained
in a fixed convex body K. When L is a line segment with length [, chord power
integrals and inclusion measures have the following relation (see [15]):

(1.1) L(K) = %A(A ~1) /oo (P2 A > 1.
0

Now, we give another integral formula for the chord power integral and it
will be used in the following.

The position of an oriented line & in R™ can be fixed by specifying its
direction u and the point p, where £ intersects the orthogonal hyperplane
through the origin. The “integral-geometric density” d&;, for oriented lines is
then given by

dé, = dpdu,

where dp is the (n — 1)-dimensional volume element in the orthogonal hyper-
plane u, and du is the element of surface area of the unit sphere S*~!. Let
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a(p,u) = voli (K N¢&1). Then we get another integral formula for chord power
integral

1
(1.2) L(K)= -/ / o(p, u) dpdu,0 < X < oco.
n fgn-1 K|ut

To establish the Brunn-Minkowski-type inequalities for chord power inte-
grals, we need more facts about convex body.
Associated with convex body K is its support function hk defined on R by

hi(z) = max{{z,y) :y € K},

where (z,y) is the usual inner product of z and y in R". The function hg
is positively homogeneous of degree 1. We will usually be concerned with the
restriction of the support function to the unit sphere S™~1.

The Minkowski addition of two convex bodies K and L is defined as

K+L={z+y:ze€K,yelL}.
The scalar multiplication AK of K, where X > 0, is defined as
AK ={Az:z € K}.
For convex figure AK + pL, the support function is
hak+pr = Ahg + phyr.
The projection body of K is the centered convex body IIK defined by
bk (u) = Va1 (K|ub)

for each u € S"~!, where K|ul is the orthogonal projection of K on ut. We
denote the polar body of K by K*, and call II* K, the polar body of IIK, the
polar projection body of K.

The difference body of convex body K, denoted by DK, is the centrally
symmetric convex body(centered at the origin) defined by,

DK=K+(-K)={r—y:z€ K,ye K}.
It is well known that DK can be equivalently described as follows,
DK ={z:(z+ K)Nn K # 0}.

If K is a convex body that contains the origin in its interior, then we associate
with K its radial function pg on S~ ! by:

pr(u) =max{A > 0: )y € K}.

It is not difficult to verify that the radial function ppg of the difference body
DK is
ppx (u) = max voly (K N (lu +y)),u € st
yeu

The function
gr(z) = V(K N (K + 1)),
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for z € R", is called the covariogram of K. Note that gk (o) = V(K) and that
if u € S™1, then gg(ru) =0 for r > ppr (u).
For convex bodies K, L in R"™, the Brunn-Minkowski inequality is

Va(K +L)>Va(K)+ V= (L),
with equality if and only if K and L are homothetic.

2. Main results
Theorem 1. Let K, L be convex bodies in R™. Then for 0 < A <1,
R (K +1) > IF(K) + I} (D).
Proof. Let & € AG4 . It is easy to prove that
(K+L)Nn& 2 (KNé&) +(LN&).

Hence, according to Brunn-Minkowski inequality and Minkowski inequality, we
have

I} (K + 1) = (3%

n AléAGlln voh (K +L)N gl)Adfl)%

2an—1

> n /&eAGl,n vl [(KN&) + (LN fl)]'\d&ﬁ
> (%/ [U0l1(Kﬂ£1)+Uol1(Lm§1)]>\d£1)%
n §1€EAGL

200n 1

> ( / vol} (K 1 61)déy) ¥
£1€AGL

2an—1

n

+( / voll (L N 61)dér )
£1€AG

n
> I3 (K) + I ().
This completes the proof. O

For the case of A > 1, we can make use of inclusion measures to establish
the similar inequality.

Theorem 2. Let K, L be convex bodies in R™. Then for A > 1,
L(K+L)>IL(K)+ I\(L).

To prove the theorem, we should establish the similar results for inclusion
measures and then using the relation (1.1) to finish our proof. For this aim, we
prove several lemmas in advance.

Firstly, we define the set

CK,L,\)={z:z+ALCK}.
The following Lemma 1 is explicitly contained in the paper [13].
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Lemma 1 ([13]). If K is a convex body and L is a convez figure in R™, then
the inclusion measure of L contained in K is

mmm=/ V(C(K, oL, 1))du(e),
SO(n)

where v is the unique invariant probability measure on SO(n).

Lemma 2. If K is o convez body and L is a convex figure in R*, then
ClaK,L,\) = aC(K, lL,)\) =aC(K, L, 2),04 >0,A>0.
o)

In addition, if 0 < a < 1, then C(aK,L,A) C «C(K,L,X); if a > 1, then
C(aK,L,)\) D aC(K,L,\).

Proof. Trom the definition of the set C'(K, L, ), we can get
ClaK,L,A)={z e R" :z+ AL CaK}
—[eR: é(HAL) C K}
1 A
={zeR':~ce K- =L}
o o

A
:{a:cEIR":a:GK—aL}

1
OéC(K, EL’ >\)

= aC(K, L, 3L).
[0

Furthermore, if 0 < o < 1, then

C(K,L,2) C (K, L, \).
(87

So

aC(K, L, 2) C aC(K, L 2).

Hence,
C(aK,L,\) C aC(K,L,)).
Similarly, if o > 1, then

CK, L)) € C(K,L, %)
So \
aC(K,L,}) C aC(K,L, 7).
Hence,

aC(K,L,A) C C(aK,L,)).
This completes the proof. O



592 GE XIONG AND XIAOGANG SONG

In the following, we will denote C(K) = C(K, L, ), then we can get the
following results.

Lemma 3. Let K;,i = 1,2,...,8,5 € N, be convex bodies and L be a convexr
figure in R™. Then for s > 1, there holds

Zc CCZK

Proof. For any z € }_;_, C(K;), = can be expressed as
z=z1+ao+ -z, 2, €CK), i=1,2,...,s
From the definition of C'(K;), we can get
(z1,u) < hi, (u) — Ahp(u),
(2,u) < hi,(u) — Ahg(u),

for u € S 1. So
T T+t

< b (W) + haey () + - - + D, (u)

( yu) < — Mg (u).
s s
That is,
() < Msteesa )y ),
1
g<w,u) < hryrosax, (w) — Ahp(u).
Hence,

s s
Since 0 < £ < 1, from Lemma 2 we can get

Zzzlf(Ki (Zz-— Kl 1 ZK

0.)

So
ZC(Ki) C C(Z K;).
Od

Lemma 4. Let K;,i = 1,2,...,5,5 > 1,5 € N, be convex bodies and L be a
convez figure in R*. Then

MK +Kyt-+ K, (L) > Mg, (L) + MK, (L> + o+ MmE, (L)



INEQUALITIES FOR CHORD POWER INTEGRALS 593
Proof. Firstly, we consider the case when s = 2. From Lemma 2, we can get

M, +1,(L) = / V(C(Ky + Ka,eL, \))dv(e).
S0O(n)

From Lemma 3 and Brunn-Minkowski inequality, there holds
VE(C(KL + K2)) > VE(C(Ky) + C(K2)) > V3 (C(K) + V' (C(K)).
So,
V(C(K; + K3)) > V(C(Ky)) + V(C(K?)).

Therefore,

M+ K, (L) = / ( )V(C(Kl + Ks,eL, A))dv(e)
SO(n

> / V(C (K, eL, \)dv(e) + / V(C(Ky, eL, \))dv(e)
50(n) 50(n)
=mg, (L) + mg, (L).
By the finite induction, it can be easily get
M 4 Ko ++K, (L) > mi, (D) + M, (L) + - -+ + mk, (L)

This completes the proof. O

Proof of the Theorem 2. When A > 1, from the equation (1.1) and the above
Lemma 4 we have

1 o
I)\(K + L) = 5/\()\ — 1)/ mK_,_L(l)l)‘"le
0

> %)\()\ _ 1) Am mK(l)l/\—zdl + %)\()\ — 1) /OOO mL(l)l/\—le
= I\(K) + I\(L).

This completes the proof. DO

Question. Let K, L be convex bodies in R™. Does the following inequality
hold for all A > 07

(K + L) > I} (K) + I} (1),

Theorem 3. Let K be a convex body in R™. Then for A > 1,

() < B0+ L ) [ (U

Y du,

with equality holds if and only if K is a simplex.
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Proof. Let £ = ru, where r > 0 and u € S* 1, and define
gk (r,u) = gr (ru).

According to the concavity of gx (ru)= on its support DK (see the Lemma,
3.2in [5]) and

g(gK(Tvu))%l ____hHK(u)

or  V(K) ' "7 nv(K)’
we have b

o) < V(K)(1 - L)y

for 0 < r < ppx(u). Therefore,

oK (u) o (u)
/ gk (ru)r*~tdr < V(K)/ (1- Mr)"r’\_ldr
0

0 nV(K)
/ (1—t)"t*dt
nV(K) \
= BAn+1)V(K .
(o + V() (E0)
On the other hand, from the proof of Theorem 3 in [3], we have
pDK (u) N1 1 oy
S — : .
[ atrortar= 5ty [ oty

From the formula (1.2), we can get

Dy (K) = / / o(p, u)*** dpdu
Sn—1 KluJ_

< A+D B(A\n+ l)V(K)(nV(f( ))
n gn—1
- __A(A: YB0un + )V(K) /S B Z;}Sﬂ)
) A

= A+ DB+ 1L,n)V(K) /Sn_l hmf( ),

))\
) du

since AB(A\,n 4+ 1) = nB(A + 1,n).
Equality holds if and only if gx (ru)= is linear in r for each u € $"~!, and
hence , if and only if K is a simplex. This completes the proof. O

Remark. Theorem 9 in paper [13] gives the upper bound for the integration
of inclusion measure of convex bodies. We point out that when the contained
convex figure L is a line segment with length I, we also can get the same result
as the above Theorem 3 from Theorem 9 directly. So, Theorem 3 here is a
corollary of Theorem 9 in [13].

From Theorem 3, we can get the following reverse form of the Petty projec-
tion inequality, that is, the famous Zhang projection inequality.



INEQUALITIES FOR CHORD POWER INTEGRALS 595
Corollary 1. Let K be a convex body in R™. Then
n‘"< 2n ) < V(K)"'VITK),
with equality holds if and only if K is a simplez.
Proof. When A = n, the equality in Theorem 3 is

nV(K) .,
Inii(K)<(n+1)B(n+1,n)V(K) \/Sn/l m) du.
Since
1
L (K) = (n+ 1)V(K)?, () pu-k (),
we have
DV < (4 )G [ el
=(n+ 1)%;)—!1)!n”+1V(K)"V(H*K).
That is,

n-n( on ) < V(K" \W(IT"K).

The condition of the equality can be get from the above Theorem 3 directly.
This completes the proof. O
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