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FOUR LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS INVOLVING GAMMA FUNCTION

FENG Q1, DA-WEI N1u, JiIAN CAO, AND SHOU-XIN CHEN

ABSTRACT. In this paper, two classes of functions, involving a parameter
and the classical Euler gamma function, and two functions, involving
the classical Euler gamma function, are verified to be logarithmically
completely monotonic in (—%,oo) or (0,00); some inequalities involving
the classical Euler gamma function are deduced and compared with those
originating from certain problems of traffic flow, due to J. Wendel and
A. Laforgia, and relating to the well known Stirling’s formula.

1. Introduction

Recall [30, 44, 48] that a function f is said to be completely monotonic on
an interval [ if f has derivatives of all orders on I and

(1 (=)™ (z) >0

for z € I and n > 0. The set of the completely monotonic functions on I is
denoted by C{I]. The well known Bernstein’s Theorem [48, p. 161] states that
f € C[(0,00)] if and only if

2) f(@) = / T e du(s),

where p is a nonnegative measure on [0,00) such that the integral converges
for all z > 0. This expresses that f € C[(0,00)] if and only if f is a Laplace
transform of the measure u.

Recall [8, 20, 30, 33, 36, 39, 40] also that a positive function f is called
logarithmically completely monotonic on an interval I if f has derivatives of
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all orders on I and its logarithm In f satisfies
(3) (=1)*n f(2)]® >0

for all k € Non I. The set of the logarithmically completely monotonic func-
tions on I is denoted by L[I]. In [9, Theorem 1.1] and [20, 40] it is pointed
out that the logarithmically completely monotonic functions on (0, 00) can be
characterized as the infinitely divisible completely monotonic functions studied
by Horn in [21, Theorem 4.4].

It was proved in [9, 30, 39, 40, 44] that

(4) L[] c ¢,

but not conversely. Stimulated by the papers [36, 39], among other things, it
was further revealed in [9] that

) S\ {0} € £[(0,00)] C C[(0, 00)),

where § denotes the set of Stieltjes transforms.

From the inclusions (4) and (5), it is easy to see that, in order to show
some functions, especially the power-exponential functions or the exponential
functions, are completely monotonic, maybe it is sufficient and much simpler or
easier to prove the stronger statements that they are logarithmically completely
monotonic or Stieltjes transforms.

It is worthwhile to note that there have been a lot of literature on com-
pletely monotonic functions and logarithmically completely monotonic func-
tions related to the gamma function, psi function or polygamma functions.
Although it is not practicable to list all of these papers, we still would like
to offer some of them, for example, 3, 4, 5, 6, 7, 10, 15, 17, 19, 22, 28] or
[12, 13, 14, 26, 29, 34, 41, 42] and the references therein, to the readers.

It is well known that the classical Euler’s gamma function I'(z) is defined
for z > 0 as

(6) I(z) = / e '™t dt.
0
The logarithmic derivative of I'(z), denoted by
_ (=)

is called the psi or digamma function, and ¥ (z) for i € N are known as the
polygamma or multigamma functions. These functions play central roles in
the theory of special functions and have lots of extensive applications in many
branches, for example, statistics, physics, engineering, and other mathematical
sciences.

The Kershaw’s inequality in [23] states that the double inequality

PA I'z+1) 1 1 "
(8) <$+§> <m<<$—§+ S+Z>
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holds for 0 < s < 1 and z > 1. If taking s = § in (8), then

' 1 L(z+1) V3 -1
9) m+1<———r(x+1/2)< T+

In [24], the following Laforgia’s inequalities were established: If 0 < A < 1
or A >2andz > 0, then

T(z +1) A\
o Fe > (+3)

which extends the left hand side inequality in (8); If 1 < A < 2 and z > 0,
inequality (10) is reversed; If 0 < A < 1 and z > 1, then

T(z+1) 22\
11 s 2)
(11) r(g;+x)<(“3) ’
Ifl1<A<2andz >0, then
I(z +1) 1 a7
12 o S+2)
(12) I‘(m+/\)><x+8+2) ’
Ifl<A<2andz>1, then
T(z+1) 1 A\
13 7 — 4+ 2 .
(13) F(w+/\)><$+10+2>
In particular, setting A = £ in (11) yields for z > 1
Tz+1) 1
14 _— —.
(14) Tes1/2) “V*t3

It is easy to see that inequality (11) and the right hand side inequality in
(8) are not included each other and it is also clear that inequality (14) is better
than the right hand side inequality in (9).

Let s and ¢ be two real numbers and o = min{s, ¢}. For z € (—a, 00), define

Tz +1)1Y/07 oy
(15) zst(x) = ¢ |T(z + 5) ® ’
e¥(@ts) _ g s=t.

In order to establish the best bounds in Kershaw’s inequality (8), among other
things, the papers [11, 18, 38] established the following monotonicity and con-
vexity property of z, ((x): The function z, ¢(x) is either convex and decreasing
for |t — s| < 1 or concave and increasing for |t — s| > 1.

In [16, p. 123] and [25], while ones studied certain problems of traffic flow,
the following double inequality was obtained for n € N:

(16) 2F<n+%> SF(%)F(n+1)§2"F(n+—;—>,
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which can be rearranged for n > 1 as

I(1/2)0(n + 1)1V ""Y
1 < | <2
(a7 s [ 2I'(n+1/2) =
In [43], by using the following double inequality due to J. Wendel in [47]:
l—a
T I'(z +a)
<—=<1
(18) (m+a) - zoT(z) —
for 0 < a <1 and z > 0, inequality (16) was extended and refined as
Fz+1) 1
1 <—/——Z =
(19) Ve Sty SVEte
for z > 0.

It is clear that the double inequality (19) is weaker than (9) and the right
hand side inequality in (19) is also weaker than (14).

In [10], the following conclusions were established:

(1) The function

Iz+1)
20 =
for £ > max {—3, —c} is completely monotonic on (—¢,0) if ¢ < %;
the function # is completely monotonic on [—3,00) if ¢ > .

f(=)
(2) Let a+1>b>a, a = max{—a,—c}, § = max{-b, —c} and
B T(z+0b)
. — a—b -\ T Y/
(21) g(m,a,b,c) - (.’E-I—C) F(.’C-l—a)

for z > a. Then the function g(z;a,b,c) is completely monotonic on
(a,0) if e < gifg_—l and the function is completely monotonic
forz>Bifc>a.

The middle term in (17) hints us to define

[(1/2)T(z + 1)1V
[m] sl

alioreef@) o

for z € (—3,00), where v = 0.57721566 - - - is the Euler-Mascheroni constant,
and to consider its logarithmically complete monotonicity.
The first main result of this paper is the following:

Theorem 1.1. g(z) € L[(~3%,0)] with

S S

(22) g(z) =

(23) lim ¢(z) =00 and lim g(z) =1

z—%—%—}— T—roC
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Remark 1. From the decreasingly monotonic property of g(z),

Jim o) =1 and g(1) =exp|1 -7 u(3)].
I‘(%)F(w+1)

it is obtained that
2F<w + %) exp{(a: - 1) [1 —y— w<g>} }

1
(24) 2r (w + —2—)
for z € [1,00). From ¢(0) = 2, lim, o g(z) = 1 and the decreasingly mono-
tonicity of g(z), it is also revealed that

(25) 2r (w + %) < P(%) T(z+1) < 2“01—‘<3: + %)

for z € (0, 00).

Inequalities (24) and (25) extend (16) and (17) and the right hand side in-
equality of (24) refines the right hand side inequality of (16) and (17). There-
fore, it can be said that Theorem 1.1 generalizes, extends, and refines the double
inequalities (16) and (17).

IN

IN

Remark 2. Numerical calculation shows

N AT

2+% :1.5---<ﬁexp{@—l)[l—v—d;(%)]}:1.6~~-,

hence, inequality of (14) and the following inequality

(26) rr(‘,q(;m++1})2) s r(12/2) exP{(m b [1 T w@)] }

for z € [1, 00), which is rearrangement of the right hand side inequality of (24),
are not included each other. Similarly, it is easy to show that inequality (26)
and the right hand side inequality in (19) are also not included each other for
z € [1,00).

and

The left hand side inequality in (18) reminds us to introduce
(x4 a)l=T(z + a)
z[(x)
for z > 0 and a > 0 and to discuss its logarithmically complete monotonicity.
The second main result of this paper is the following:

Theorem 1.2. (1) ho(z) € L[(0,0)] f0<a< 1.
(2) [ha(@)]7! € L(0,00)] if a > 1.

(27) ha(z) =
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(3) For anya >0,

(28) zl~i+r(r)1+ ha() = E(aj—l)

and lim hy(z) = 1.

T—r00
Remark 3. It is easy to see that Theorem 1.2 is not included in [10, Theorem 1
and Theorem 3] mentioned above, the complete monotonicities of the functions
f(z) and g(z;a,b,c) defined by (20) and (21).

Remark 4. Since

ho(1) = (1+a)* °T'(1 +a)
and he () is monotonic in [1, 00) for given a > 0 and a # 1, it is deduced from
Theorem 1.2 that

z+a\'"* 1 I'(z+1) —a
(29) (1+a) fiva) STara <@t

in [1,00) for 0 < a < 1. Especially, for z € [1, 00),

P 1\'?  T@+1) 1\ /2
The well known software MATHEMATICA 5.2 shows that the left hand side
inequalities in (8) and (29) are not contained each other. So do the left hand
side inequalities in (9) and (30).

If a > 1, inequalities (29) and (30) are reversed. It is easy to see that
the range of the parameter @ > 1 in the reversed inequality of (29) is more
extensive than that of 1 < A < 2 in (12) and (13) although the lower bound
in the reversed inequality of (29) under the conditions z > 1 and 1 < a < 2 is
not better than those in inequalities (12).and (13).

In order to obtain a refined upper bound in (18), let us consider the loga-
rithmically complete monotonicity of the function

I(z + a)
31 alT) = — ="
(31) falw) = S
the middle term in (18), for z € (0,00) and a € (0, 00).
The third main result of this paper is the following:

Theorem 1.3. (1) fo(z) € L[(0,00)] and limy_04 fo(z) = 00 if a > 1.
(2) [fal@)]™! € L[(0,0)] and lim, oy fo(z) =0 if 0 <a < 1.
(3) limy o0 fa(x) =1 for any a € (0, 0).

Remark 5. It is also easy to see that Theorem 1.3 is not also included in [10,

Theorem 1 and Theorem 3] mentioned above, the complete monotonicities of
the functions f(z) and g(z;a,b, c) defined by (20) and (21).

Remark 6. From the fact that f,(1) = I'(1+a) and the monotonicity of f,(z),
it follows that
Iz +1) zi=e

(32) T < I(z + a) = I'(1+a)
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in [1,00) for 0 < a < 1. If a > 1, then inequality (32) is reversed.

Easily numerical calculation reveals that for z € [1,00) and 0 < a < 1 the
right hand side inequalities in (32) and (8) and inequality (11) are not included
each other. Under the conditions 1 < a < 2 and = > 1 the reversed inequality
(32) and inequalities (12) and (13) are not included each other.

As a straightforward consequence of combining Theorem 1.2 and Theo-

rem 1.3, the following refinement of the upper bound in inequality (18) is
established.

Theorem 1.4. Let z € (0,00). If 0 < a < 1, then
l1—a
(33) ( T ) < I(z+a)

z+a ze¢T(x)
1—a
F(a+1)< :c ) <1 0<sz< ap(a),
< a® z+a 1 - p(a)
1 ap(a) <z <o
’ 1 - p(a) ’
where
z 1/(1-z)
x
— 1,
(34) ple) = [F(m + 1)} 7L
e 7, z=1

If a > 1, the reversed inequality of (33) holds.

Remark 7. The graph of the function _apla). pictured by MATHEMATICA 5.2,

1—p(a)’
shows that it is an increasing function from (0, c0) to (0, 00).

Finally, as a by-product, the logarithmically complete monotonicity of the
function p(x) defined by (34) is presented as follows.

Theorem 1.5. p(z) € L](0,00)] with lim, ;o1 p(z) = 1 and lim,_,» p(z) = L.

€

Remark 8. From Theorem 1.5, it is deduced easily that
(35) = <[D@e < =
e

S5
for z € {1, 00), which improved inequality (4.1) in [2, Theorem 2] and inequality
(1.6) in [7, Theorem 1.5] partially.

Further, if taking z = n + 1 in (35), then

(36) e "n+1)" <n!<e M(n+1)"

holds for n € N, which is related to the well known Stirling’s formula [1, 16,
27, 45, 46).

Remark 9. For more information on the history and background of this topic,
please refer to [31, 32, 35, 37] and the related references therein.
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2. Proofs of theorems

It is well-known that, for z > 0 and w > 0,

1 1 &
37 —_ = t“~ et q,
7 =) o
and that, for k € Nand z > 0,
* 1
(38) Y(z)=Inz +/ (l - — )e‘”" du,
o \u 1l—e
k rer [t t
(39) $® () = (=1)F+ / Tt
0
Moreover, as  — oo, the following asymptotic formula holds:
_o Iz +a) (a-b)la+b-1) 1
b—a — -
(40) z —_—F(x-i-b) 1+ 92 +0 =

where a and b are two constants.

It is remaked that formulas (37), (38), (39) and (40) can be found in [1,
p- 257 and p. 259] and [27, 30, 33, 36, 38, 39, 40, 45, 46].
Proof of Theorem 1.1. Taking logarithm of g(z) leads to

Ing(z) = InT'(z + 1) +lnF(1./TQ)_-;lnF(x+ 1/2) —In2

_Il@+1) -2 Wl(z+1/2) - InT(1/2)

- z—-1 z—1
_InT(z+1)-InT(14+1) WInl(z+1/2)—InT(1+1/2)
N r—1 - z—1

1 ¥ 1 ¥ 1
z'_1/1 1/J(u+1)du—-ac—_1/1 1/)<u+§>du

=mi1/1w[w(u+1)—w(u+%)Jdu

z 1
! / V' (u+t)dtdu
1/2

.Z‘—l 1

1 1 T ,
*/1/2[%1/1 ¢(u+t)du]dt

1,1
:/ /w'((x—l)u+t+1)dudt
1/2 Jo
and, for k € N,

(=1)*[Ing(z)]® = /i /1 uF[(=1) 3 (& — Du+ £+ 1)) dudt > 0
1/2J0

by considering formula (39). This means g(z) € L[(-3,00)].
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By L’Hospital’s rule and formula (38), it is deduced that
lim Ing(z) = lim [w(m +1) - 1[)<:E + 1)]
T—00 200 2

1 <71 1
= lim In 2 + lim / - = (e*“ — e‘"'/2)e*””“ du =0,
z—r00 x+1/2 z—o0 [ u l—e v
which can be restated as lim, o g(z) = 1.
It is easy to see that

lim ln g(x) =00 and lim g(z) = oc.
z——3 5 T §+
The proof of Theorem 1.1 is complete. a

Proof of Theorem 1.2. Using the differences equation I'(x + 1) = zI'(z) and
taking limit directly gives

I(z+a+1)  T(l+4a)
m—>0 (z+a)l(z+1)  a*
Using the asymptotic expansion (40) yields

i) = et = (1 2 : e o(3)] -1

hm ho(z) =

as r — 00, which means lim,_,o ho(z) = 1.
Taking logarithm of h,(z), differentiating with respect to & successively and
utilizing formulas (37) and (39) leads to

Inhe(z) =(1-a)ln(z+a)+InT(z+a) —InT(z+1)
and, forn € Nand n > 1,
[l hg ()]

(=)™ *n - 1)!

-1) _ n=1)
o +9p™ V(2 +a) - (x+1)

=(l-a

D (D 4 0) - (1) e+ )|

)
[ %S} tnfl
{/ a _ 1 —(z+a ttn 1 dt +/ [e—(w+a)t _ e)(:c-i-l)t] dt}
0 0 1—et
(m+a)ttn 1
— (_1\" N _ ot _ la-1)
= (-1) {/0 — [(a Di-—et)+1—e ]dt}

oo ,—(z+a)tyn—1
2 e t
= (-1)" ——r(t)dt.
(-1) /0 — ()

It is clear that
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and r(0) = 0. Therefore, the function r(¢) is non-positive for ¢ > 1 and
r(t) > 0for 0 < a < 1. As a result, (=1)*[Inhy(2)]™ < 0 for ¢ > 1 and
(=1)*[lnhe(z)]™ >0for 0 < a < 1.

By formula (38), it is easy to see that

1-a
In he(z)] = - 1
I ha(e)) = S +(a+a) ~ Yo+ 1
1-a x+a * /1 1 et N —at
= 1 - at _ dt
x+a+nx+1+/0 (t 1—e—t)(e e
—+0

as ¢ — 00. Since [In b, ()]’ is decreasing for a > 1 and increasing for 0 < a < 1,
then [In h,(z)]’ > 0for a > 1 and [Inh,(z)]' <0for 0 <a < 1.

Summing up, for any positive integer k € N, if @ > 1 then (—1)*[In h,(z)]*
<0,if 0 < a < 1 then (=1)*[In hy(z)]® > 0. The proof of Theorem 1.2 is
complete. O

Proof of Theorem 1.3. Applying (40) reveals
['(z+ a) ala —1) 1
= = - 1
fo(2) 2T() 1+ 5 +0 -

as ¢ — oo for a € (0, 00).
From

z'7T(z +a)

fo(z) = _F(x_+T’

it follows that
. o, a>1,
zl—l>rg+ falz) = {0, 0<acx<l.
Taking logarithm of f,(z) and differentiating yields
Info(x) =InT(z +a) —alnz —InT(x)
and, by (37) and (39) for n > 1,
(=1)""'(n - 1)!
"

c4wmn@mm=enﬂw“”w+@—mem—a

= / (e“(z“)t —e ) dt + / ae” "1 dt
0 1—et 0

oo tn—l
= / rpp= [e* —1+a(l—e*)]e*tdt
o 1-—

N /oo tn—l (t) ot dt
=) T s(t)e .
It is clear that s(0) = 0 and
§'(t) = a1l — et
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Thus, standard argument gives
> 1
st) = 0, a>1,
<0, 0<axl.
This implies

—_1\" T (n) >0, a>1,
i) {ﬁO, 0<a<l
Since

In fo(z)] = ¥(z + a) —¥(z) — %

<1 1 —at et a a
= - @ _1)e=di+ln(14+2) -2 5
/0 (t 1—e—t)(e e **dt + n( +x> . 0

as r — oo and the function [In f,(z)]' is increasing for a > 1 and decreasing
for 0 < a < 1, then

<0, a>1
1 . 1 g bl 9
[ fa(@)] {20, 0<a<l.

In a word, for k € N, it follows that

>0, a>1,
<0, O0<ax<l.
The proof of Theorem 1.3 is complete. |

(—=1)¥{In fa(2))® {

Proof of Theorem 1.4. As a direct consequence of Theorem 1.2, a double in-
equality is obtained: For 0 < a < 1 and z > 0,

l1—a l1—a
1
(41) z <F(x+a)<1"(a+ V[ = ‘
T+a z°T(z) a® z+a
For a > 1 and z > 0, the double inequality (41) is reversed.

As an easy consequence of Theorem 1.3, an inequality is deduced: For 0 <
a < 1, inequality

(42) _1;(%4(%}%) <1

is valid in z € (0, 00). For a > 1, inequality (42) reverses.
It is a standard argument that

1—a
F(a+1)< x > <1
a® r+a -

if and only if

O<x S _aﬂ(ﬂ_
1 —p(a)
for 0 < @ < 1. The proof of Theorem 1.4 is complete. O
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Proof of Theorem 1.5. From the differences equation I'(z + 1) = zI'(z), it fol-
lows easily that

1
(43) Yo+ =) =
for z > 0. Taking logarithm of p(z) and utilizing (43) gives
_zlnz—InT(zx+1)
_Inl'(z+1)-In'(1+1) zlhz-1lnl
B z-1 z—1
S /wd)(u+1)d L/w(l+lnu)du
T z-1J; R 1
1 x
:x—l/l Wu+1)—lnuldu—1
1 ¥ 1
= x—1/1 [¢(u)—lnu+a] du—1
s _1 /qu( ydu—1
= U p—
-1/ “

=/JW«z—Uu+Ddu—L
0

Formulas (37) and (38) imply that

T(z):¢(w)—lnx+%=/ooo[——————— e

Since e* — 1 —u > 0 for u € (0,00), then ¥(z) € C[(0,00)]. Therefore, for
keN,

(—DWMPWH“%:AIM{GJVWW«x-1m+4HduZo

This means p(z) € L[(0, o0)].
The L’Hospital’s rule and formulas (38) and (43) yield
lim Inp(z) = lim zlnz —InT(z+1)

00 z—>00 1—z

= zll)rr;o[w(z +1) - (1+Inz)]

T—>0o0

= lim [zp(m) —Inz+ ﬂ -1

= lim [¢(z) — Inz] + lim 1_ 1

oo z—o0 I

=-1

Thus, it follows easily that lim,_, . p(z) =

@ |
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It is clear that lim, o4 Inp(z) = 0. Hence, the limit lim, o, p(z) = 1
follows. The proof of Theorem 1.5 is complete. U
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