CONVERGENCE OF APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING NON-LIPSCHITZIAN MAPPINGS

JONG SOO JUNG[†] AND DAYA RAM SAHU [‡]

ABSTRACT. Let X be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of $X, T: C \to X$ a continuous pseudocontractive mapping, and $A: C \to C$ a continuous strongly pseudocontractive mapping. We show the existence of a path $\{x_t\}$ satisfying $x_t = tAx_t + (1-t)Tx_t$, $t \in (0,1)$ and prove that $\{x_t\}$ converges strongly to a fixed point of T, which solves the variational inequality involving the mapping A. As an application, we give strong convergence of the path $\{x_t\}$ defined by $x_t = tAx_t + (1-t)(2I-T)x_t$ to a fixed point of firmly pseudocontractive mapping T.

1. Introduction

Let X be a real Banach space with dual X^* and T be a mapping with domain D(T) and range R(T) in X. Following Morales [12], the mapping T is called strongly pseudocontractive if for some constant k < 1 and for all $x, y \in D(T)$,

(1)
$$(\lambda - k)||x - y|| \le ||(\lambda I - T)(x) - (\lambda I - T)(y)||$$

for all $\lambda > k$; while T is called a pseudocontraction if (1) holds for k = 1. The mapping T is called Lipschitzian if there exists L > 0 such that

$$||Tx - Ty|| \le L||x - y||$$
 for all $x, y \in D(T)$.

Otherwise, the mapping is called non-Lipschitzian. The Lipschitzian mapping T is called nonexpansive if L=1 and is called a contraction if L<1. Every nonexpansive mapping is a pseudocontractive. The converse is not true. The example, $Tx=(1-x^{\frac{2}{3}})^{\frac{3}{2}}, x\in[0,1]$ is a continuous pseudocontraction which is

Received July 24, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10, 47J20.

Key words and phrases. pseudocontractive mapping, strongly pseudocontractive mapping, firmly pseudocontractive mapping, nonexpansive mapping, fixed points, uniformly Gâteaux differentiable norm, variational inequality.

[†] This paper was supported by Dong-A University Research Fund in 2006.

[‡] The second author wishes to acknowledge the financial support of Department of Science and Technology, India, made in the program year 2006-2007, Project No. SR/FTP/MS-04.

not nonexpansive. Indeed,

$$\left| T\left(\frac{1}{4^3}\right) - T\left(\frac{1}{2^3}\right) \right| = \left| \left(\frac{15}{16}\right)^{\frac{3}{2}} - \left(\frac{3}{4}\right)^{\frac{3}{2}} \right| = \frac{\left| (15)^{\frac{3}{2}} - (12)^{\frac{3}{2}} \right|}{64} > \frac{7}{64} = \left| \frac{1}{4^3} - \frac{1}{2^3} \right|.$$

A mapping T with domain D(T) and range R(T) in X is called firmly pseudocontractive if for all $x, y \in D(T)$,

$$||x - y|| \le ||(1 - \lambda)(x - y) + \lambda(Tx - Ty)||$$

for all $\lambda > 0$. Following Kato [10], we are able to find an equivalent definition for firmly pseudocontractive operators. An operator $T:D(T)\to R(T)$ is firmly pseudocontractive if and only if for every $x,y\in D(T)$, there exists $j(x-y)\in J(x-y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \ge ||x - y||^2,$$

where $J: X \to 2^{X^*}$ is the normalized duality mapping which is defined by

$$J(u) = \{ j \in X^* : \langle u, j \rangle = ||u||^2, ||j|| = ||u|| \}$$

(see Browder [2] and Kato [10]). It is an immediate consequence of the Hahn-Banach theorem that J(u) is nonempty for each $u \in X$.

The firmly pseudocontractive mappings are characterized by the fact that a mapping T is firmly pseudocontractive if and only if the mapping f = T - I is accretive (see Lemma 5).

The concept of firmly pseudocontractive mapping was introduced by Sharma and Sahu [20]. The mapping $T: D(T) \to R(T)$ is firmly pseudocontractive if and only 2I - T is pseudocontractive (see Lemma 5).

In [15], Moudafi proposed a viscosity approximation method of selecting a particular fixed point of a given nonexpansive mapping which is a unique solution of a variational inequality in a Hilbert space. He proved the following theorem:

Theorem M (Theorem 2.1, Moudafi [15]). Let C be a nonempty closed convex subset of a Hilbert space H. Let $T: C \to C$ be a nonexpansive mapping and $f: C \to C$ a contraction mapping. Let $\{x_n\}$ be the sequence defined by the scheme

$$x_n = \frac{1}{1 + \varepsilon_n} T x_n + \frac{\varepsilon_n}{1 + \varepsilon_n} f x_n,$$

where ε_n is a sequence (0,1) with $\varepsilon_n \to 0$. Then $\{x_n\}$ converges strongly to the unique solution of the variational inequality:

(2)
$$\langle (I-f)\tilde{x}, \tilde{x}-x \rangle < 0 \text{ for all } x \in F(T).$$

In other word, \tilde{x} is the unique fixed point of $P_{F(T)}f$.

Recently, Xu [22] extended the viscosity approximation method proposed by Moudafi [15] for a nonexpansive mappings in a uniformly smooth Banach space.

Theorem X (Theorem 4.1, Xu [22]). Let C be a nonempty closed convex subset of a uniformly smooth Banach space $X, f \in \Pi_C$ the set of all contractions on C and $T: C \to C$ a nonexpansive mapping with $F(T) \neq \emptyset$. Then the path $\{x_t\}$ defined by

$$x_t = tfx_t + (1-t)Tx_t, \quad t \in (0,1)$$

converges strongly to a point in F(T). If we define $Q:\Pi_C\to F(T)$ by

$$Q(f) = \lim_{t \to 0^+} x_t, \quad f \in \Pi_C,$$

then Q(f) solves the variational inequality:

$$\langle (I-f)Q(f), J(Q(f)-v) \rangle < 0, \quad f \in \Pi_C \text{ and } v \in F(T).$$

It is well known that for certain applications the Lipschitzian assumption of mapping becomes a rather strong condition. In view of this the following natural question arises:

Question. Is it possible to replace contraction mapping f involving in variational inequality (2) by a non-Lipschitzian mapping A?

Motivated and inspired by the above question, we will consider a more general situation. In this paper our purpose is to prove that in reflexive Banach space X, for pseudocontractive mapping T, the path $\{x_t\}$ defined by

$$x_t = tAx_t + (1-t)Tx_t$$

converges strongly to a fixed point of T, which solves the certain variational inequality involving non-Lipschitzian mapping A. Using our results, we derive strong convergence theorems for firmly pseudocontractive mappings. Our results generalize and improve the results of Jung and Kim [9], Morales [13], Morales and Jung [14], Moudafi [15], O'Hara, Pillay, and Xu [16], Reich [18], Schu [19], Sharma and Sahu [20], and Xu [21, 22].

2. Preliminaries and lemmas

Recall that a Banach space X is said to be *smooth* provided the limit

$$\lim_{t \to 0^+} \frac{||x + ty|| - ||x||}{t}$$

exists for each x and y in $S = \{x \in X : ||x|| = 1\}$. In this case, the norm of X is said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if for each $y \in S$, this limit is attained uniformly for $x \in S$. It is well known that every uniformly smooth space (e.g., L_p space, 1) hasuniformly Gâteaux differentiable norm (see e.g., [3]).

When $\{x_n\}$ is a sequence in X, then $x_n \to x$ (resp., $x_n \stackrel{*}{\rightharpoonup} x$) will denote strong (resp., weak, weak*) convergence of the sequence $\{x_n\}$ to x. Suppose that the duality mapping J is single valued. Then J is said to be weakly sequentially continuous if, for each $\{x_n\} \in X$ with $x_n \rightharpoonup x$, $J(x_n) \stackrel{*}{\rightharpoonup} J(x)$.

A Banach space X is said to satisfy *Opial's condition* (see for example [17]) if for each sequence $\{x_n\}$ in X which converges weakly to a point $x \in X$ we have

$$\liminf_{n \to \infty} ||x_n - x|| < \liminf_{n \to \infty} ||x_n - y|| \quad \text{for all } y \in X.$$

It is well-known that, if X admits a weakly sequentially continuous duality mapping, then X satisfies Opial's condition.

Let X be a Banach space and let T be a mapping with domain D(T) and range R(T) in X. The mapping T is said to be *demiclosed* at a point $p \in D(T)$ if whenever $\{x_n\}$ is a sequence in D(T) which converges weakly to a point $z \in D(T)$ and $\{Tx_n\}$ converges strongly to p, then Tz = p. The mapping T is said to be *demicontinuous* if, whenever a sequence $\{x_n\}$ in C converges strongly to $x \in C$, then $\{Tx_n\}$ converges weakly to Tx. The set of fixed point of T will be denoted by F(T).

Let C be a convex subset of X, D a nonempty subset of C, and P a retraction from C onto D, that is, Px = x for each $x \in D$. A retraction P is said to be sunny if P(Px + t(x - Px)) = Px for each $x \in C$ and $t \geq 0$ with $Px + t(x - Px) \in C$. If the sunny retraction P is also nonexpansive, then D is said to be a sunny nonexpansive retract of C.

Let C be a nonempty closed convex subset of a Banach space X. For $x \in C$, let

$$I_C(x) = \{ y \in X : y = x + \lambda(z - x), z \in C \text{ and } \lambda \ge 0 \}.$$

 $I_C(x)$ is called the *inward set* of $x \in C$ with respect to C (see, for example [5]). $I_C(x)$ is a convex set containing C. A mapping $T:C \to X$ is said to be satisfying the *inward condition* if $Tx \in I_C(x)$ for all $x \in C$, T is also said to be satisfying the *weakly inward condition* if for each $x \in C$, $Tx \in \overline{I_C(x)}$ ($\overline{I_C(x)}$ is the closure of $I_C(x)$). It is well-known (Lemma 18.1, Deimling [5]) that $T:C \to X$ is weakly inward if and only if $\lim_{\lambda \to 0^+} \lambda^{-1} d((1-\lambda)x + \lambda Tx, C) = 0$ for all $x \in C$, where d denotes the distance to C.

Recall that a Banach limit LIM is a bounded linear functional on l^{∞} such that

$$||LIM|| = 1, \liminf_{n \to \infty} t_n \le LIM_n t_n \le \limsup_{n \to \infty} t_n,$$

and LIM_n $t_n = LIM_n$ t_{n+1} for all $t_n \in l^{\infty}$.

In what follows, we shall make use of the following lemmas.

Lemma 1 (Corollary 5.1, Cioranescu [3]). If X is a smooth Banach space, then any duality mapping on X is norm to weak* continuous.

Lemma 2 (Lemma 13.1, Goebel and Reich [6]). Let C be a convex subset of a smooth Banach space X, D a non-empty subset of C and P a retraction from C onto D. Then the following are equivalent:

(a) P is a sunny and nonexpansive;

(c)
$$\langle x-y, J(Px-Py)\rangle \ge ||Px-Py||^2$$
 for all $x,y \in C$.

Lemma 3 (Lemma 1, Ha and Jung [8]). Let X be a Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X and $\{x_n\}$ a bounded sequence in X. Let LIM be a Banach limit and $y \in C$. Then

$$LIM_n||x_n - y||^2 = \min_{z \in C} LIM_n||x_n - z||^2$$

if and only if

$$LIM_n\langle x-y,J(x_n-y)\rangle \leq 0$$
 for all $x\in C$.

Lemma 4 (Theorem 10.3, Goebel and Kirk [7]). Let X be a reflexive Banach space which satisfies Opial condition, C a nonempty closed convex subset of X and $T: C \to X$ a nonexpansive mapping. Then the mapping I - T is demiclosed on C, where I is the identity mapping.

Lemma 5 (Lemma 2.2, Sharma and Sahu [20]). Let X be a Banach space and T a mapping with domain and range in X. Then following are equivalent:

- (a) T is firmly pseudocontractive;
- (b) 2I T is pseudocontractive;
- (c) T-I is accretive.

Lemma 6 (Corollary 1, Deimling [4]). Let C be a nonempty closed subset of a Banach space X and $T: C \to X$ a continuous strongly pseudocontractive mapping with constant $k \in [0,1)$ satisfying

$$\lim_{\lambda \to 0^+} \lambda^{-1} d((1-\lambda)x + \lambda Tx, C) = 0 \text{ for all } x \in C,$$

where d denotes the distance to C (equivalently, the weakly inward condition under additional assumption that C is convex). Then T has a unique fixed point.

Lemma 7. Let C be a nonempty closed convex subset of a smooth Banach space X. Let $A: C \to C$ be a continuous strongly pseudocontractive with constant $k \in [0,1)$. Then variational inequality problem VIP(I-A,C):

to find
$$u \in C$$
 such that $\langle (I - A)u, J(u - x) \rangle \leq 0$ for all $x \in C$

has at most one solution.

Proof. Let x^* and y^* be two distinct solutions of VIP(I-A,C). Then

$$\langle x^* - Ax^*, J(x^* - y^*) \rangle \le 0$$
 and $\langle y^* - Ay^*, J(y^* - x^*) \rangle \le 0$.

Adding these inequalities, we get

$$\langle x^* - y^* - (Ax^* - Ay^*), J(x^* - y^*) \rangle \le 0,$$

which implies that

$$||x^* - y^*||^2 \le \langle Ax^* - Ay^*, J(x^* - y^*) \rangle \le k||x^* - y^*||^2,$$

a contradiction. Therefore, $x^* = y^*$.

3. Main results

Before proving main results we need the following propositions:

Proposition 1. Let C be a nonempty closed convex subset of a normed space X. Let $A:C\to C$ be a mapping and $T:C\to X$ another mapping satisfying the weakly inward condition. Then for each $\lambda\in(0,1)$, the mapping $T_\lambda^A:C\to X$ defined by

$$T_{\lambda}^{A}x = (1 - \lambda)Ax + \lambda Tx, \quad x \in C$$

satisfies the weakly inward condition.

Proof. Let $x \in C$ and $\varepsilon > 0$. Since T is weakly inward, there exists $y \in I_C(x)$ such that $||y - Tx|| \le \varepsilon$, and since C is convex, there exists t_0 such that $z_t := (1 - t)x + ty \in C$ for $0 < t < t_0$. For these t we have

$$d((1-t)x + tTx, C) < ||(1-t)x + tTx - z_t|| < t\varepsilon.$$

Moreover, since C is convex,

$$w_t = \frac{(1 - t + \lambda t)x + (1 - \lambda)tAx + \lambda z_t}{1 + \lambda} \in C$$

for all $\lambda \in (0,1)$ whenever $t \in (0,1)$. Set $\alpha := \frac{t}{1+\lambda}$ and let $t \in (0,1)$. Then we have

$$d((1-\alpha)x + \alpha T_{\lambda}^{A}x, C)$$

$$\leq \|(1-\alpha)x + \alpha T_{\lambda}^{A}x - w_{t}\|$$

$$= \|(1+\lambda-t)x + tT_{\lambda}^{A}x - (1+\lambda)w_{t}\|/(1+\lambda)$$

$$= \|(1+\lambda-t)x + t[(1-\lambda)Ax + \lambda Tx] - (1+\lambda)w_{t}\|/(1+\lambda)$$

$$= \frac{\lambda}{1+\lambda}\|(1-t)x + tTx - z_{t}\| \leq \frac{t}{1+\lambda}\lambda\varepsilon,$$

and hence $\lim_{\alpha \to 0^+} \alpha^{-1} d((1-\alpha)x + \alpha T_{\lambda}^A x, C) = 0$. By (Lemma 18.1, Deimling [5]), T_{λ}^A satisfies the weakly inward condition.

Proposition 2. Let C be a nonempty closed convex subset of a Banach space X. Let $A:C\to C$ be a continuous strongly pseudocontractive with constant $k\in[0,1)$ and $T:C\to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. Then

(a) for each $t \in (0,1)$, there exists unique solution $x_t \in C$ of equation

$$(3) x = tAx + (1-t)Tx,$$

(b) Moreover, if v is a fixed point of T, then for each $t \in (0,1)$, there exists $j(x_t - v) \in J(x_t - v)$ such that

$$\langle x_t - Ax_t, j(x_t - v) \rangle < 0,$$

(c) $\{x_t\}$ is bounded.

$$T_t^A x = tAx + (1-t)Tx, \ x \in C$$

is continuous strongly pseudocontractive with constant $1 - t(1 - k) \in (0, 1)$. Indeed, for $x, y \in C$, there exists $j(x - y) \in J(x - y)$ such that

$$\begin{split} \langle T_t^A x - T_t^A y, j(x-y) \rangle &= t \langle Ax - Ay, j(x-y) \rangle \\ &+ (1-t) \langle Tx - Ty, j(x-y) \rangle \\ &\leq t k ||x-y||^2 + (1-t) ||Tx - Ty|| ||x-y|| \\ &< (1-t(1-k)) ||x-y||^2. \end{split}$$

From Proposition 1, T_t^A satisfies the weakly inward condition. Thus, by Lemma 6, there exists a unique fixed point $x_t \in C$ of T_t^A such that

$$(4) x_t = tAx_t + (1-t)Tx_t,$$

(b) Suppose that v is a fixed point of T. Since T is pseudocontractive, for $j(x_t - v) \in J(x_t - v)$, we have

$$\langle x_t - Tx_t, j(x_t - v) \rangle = \langle x_t - v + Tv - Tx_t, j(x_t - v) \rangle$$
$$= ||x_t - v||^2 - \langle Tx_t - Tv, j(x_t - v) \rangle \ge 0.$$

Hence from (4) we have

$$\langle x_t - Ax_t, j(x_t - v) \rangle = (1 - t)\langle Tx_t - Ax_t, j(x_t - v) \rangle$$

$$< (1 - t)\langle Tx_t - x_t + x_t - Ax_t, j(x_t - v) \rangle,$$

which implies that

$$\langle x_t - Ax_t, j(x_t - v) \rangle \leq 0.$$

(c) By strong pseudocontractivity of A, there exists $j(x_t - v) \in J(x_t - v)$ such that

$$\langle Ax_t - Av, j(x_t - v) \rangle \le k||x_t - v||^2.$$

Using Proposition 2(b), we obtain

$$||x_t - v||^2 = \langle x_t - v, j(x_t - v) \rangle$$

$$= \langle x_t - Ax_t, j(x_t - v) \rangle + \langle Ax_t - Av, j(x_t - v) \rangle$$

$$+ \langle Av - v, j(x_t - v) \rangle$$

$$< k||x_t - v||^2 + \langle Av - v, j(x_t - v) \rangle.$$

Thus,

(5)
$$||x_t - v||^2 \le \frac{1}{1 - k} \langle Av - v, j(x_t - v) \rangle,$$

which yields

$$||x_t - v|| \le \frac{1}{1 - k} ||Av - v||.$$

Therefore, $\{x_t\}$ is bounded.

Theorem 1. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $A:C\to C$ a continuous strongly pseudocontractive mapping with constant $k\in[0,1)$ and $T:C\to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. Suppose that every closed convex bounded subset of C has fixed point property for nonexpansive self-mappings. Suppose also that the set

$$E = \{x \in C : Tx = \lambda x + (1 - \lambda)Ax \text{ for some } \lambda > 1\}$$

is bounded. For $t \in (0,1)$, let $\{x_t\}$ be the path defined by (4). Then we have the following:

- (a) $\lim_{x \to a} x_t = \tilde{x} \text{ exists},$
- (b) \tilde{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v)\rangle \leq 0 \text{ for all } v \in F(T).$$

Proof. (a) It follows from Theorem 6 of [11] that the mapping 2I - T has a nonexpansive inverse, denoted by g, which maps C into itself with F(T) = F(g). By Proposition 2(c), $\{x_t\}$ is bounded and hence, the sets $\{Tx_t : t \in (0,1)\}$ and $\{Ax_t : t \in (0,1)\}$ are also bounded. By (4), we have

$$||x_t - Tx_t|| = t||Ax_t - Tx_t|| \to 0 \text{ as } t \to 0^+,$$

which implies that

(6)
$$x_t - gx_t \to 0 \text{ as } t \to 0^+.$$

Since X is reflexive, there exists a weakly convergent subsequence $\{x_{t_n}\}\subseteq \{x_t\}$ such that $x_{t_n} \rightharpoonup z$, where $\{t_n\}$ is a sequence in (0,1) such that $t_n \to 0$ as $n \to \infty$.

Now define the function $\varphi: C \to \mathbb{R}$ by

$$\varphi(x) := LIM_n||x_n - x||^2, \quad x \in C.$$

Since X is reflexive, $\varphi(x) \to \infty$ as $||x|| \to \infty$, and φ is continuous convex function, by Theorem 1.2 of [1, p. 79] we have that the set

(7)
$$M := \{ y \in C : \varphi(y) = \inf_{x \in C} \varphi(x) \}$$

is nonempty. M is also closed convex and bounded. Moreover, M is invariant under g. In fact, we have for each $y \in M$,

$$\varphi(gy) = LIM_n ||x_n - gy||^2$$

$$= LIM_n ||gx_n - gy||^2$$

$$\leq LIM_n ||x_n - y||^2 = \varphi(y).$$

So, by the hypothesis, there exists a fixed point u of g in M. By Lemma 3, we have

$$LIM_n\langle z, J(x_n-u)\rangle < 0$$
 for all $z \in C$.

(8)
$$LIM_n\langle Au - u, J(x_n - u) \rangle \le 0.$$

Observe that

$$||x_n - u||^2 = \langle x_n - Ax_n, J(x_n - u) \rangle + \langle Ax_n - Au, J(x_n - u) \rangle + \langle Au - u, J(x_n - u) \rangle.$$

By pseudocontractivity of T,

$$(1-k)||x_n-u||^2 \le \langle x_n - Ax_n, J(x_n-u) \rangle + \langle Au - u, J(x_n-u) \rangle.$$

From (8) and Proposition 2(b), we obtain

$$LIM_n||x_n - u||^2 \le 0.$$

Therefore, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to u$. Assume that there is another subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \to \tilde{u}$. Since $x_n - gx_n \to 0$, it follows that $\tilde{u} \in F(g)$. Using Proposition 2(b), we have that

(9)
$$\langle x_t - Ax_t, J(x_t - v) \rangle < 0 \text{ for all } v \in F(T).$$

By norm to weak* uniform continuity of J, we obtain

$$\langle u - Au, J(u - \tilde{u}) \rangle \le 0$$
 and $\langle \tilde{u} - A\tilde{u}, J(\tilde{u} - u) \rangle \le 0$.

Adding these two inequalities yields that

$$\langle u - \tilde{u} + A\tilde{u} - Au, J(u - \tilde{u}) \rangle \le 0.$$

This implies that

$$||u - \tilde{u}||^2 \le k||u - \tilde{u}||^2.$$

Since $k \in [0,1)$, it follows that $u = \tilde{u}$. Thus, $\{x_n\}$ converges strongly to u.

We finally prove that the entire net $\{x_t\}$ converges strongly. To this end, we assume that $\{t_{n'}\}$ is another subsequence in (0,1) such that $x_{t_{n'}} \to u'$ as $t_{n'} \to 0$. By (6), we obtain $u' \in F(T)$. From (9), we have that

$$\langle u - Au, J(u - u') \rangle \le 0$$
 and $\langle u' - Au', J(u' - u) \rangle \le 0$.

We must have u = u'. Therefore, $\{x_t\}$ converges strongly to $u \in F(T)$.

(b) Since $x_t \to u \in F(T)$, it follows from Proposition 2(b) and Lemma 7 that u is a unique point satisfying

$$\langle u - Au, J(u - v) \rangle \le 0$$
 for all $v \in F(T)$.

Corollary 1. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $A:C\to C$ a continuous strongly pseudocontractive mapping with constant $k\in[0,1)$ and $T:C\to C$ a continuous pseudocontractive mapping. Suppose that every closed convex bounded subset of C has fixed point property for nonexpansive self-mappings. Suppose also that the set

$$E = \{x \in C : Tx = \lambda x + (1 - \lambda)Ax \text{ for some } \lambda > 1\}$$

is bounded. For $t \in (0,1)$, let $\{x_t\}$ be the path defined by (4). Then we have the following:

- (a) $\lim_{t\to 0^+} x_t = \tilde{x} \text{ exists},$
- (b) \tilde{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v)\rangle < 0 \text{ for all } v \in F(T).$$

Corollary 2 (Theorem 1, Morales and Jung [14]). Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C nonempty closed convex subset of X and $T: C \to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. Suppose every closed convex bounded subset of C has fixed point property for nonexpansive self mappings. If there exists $u_0 \in C$ such that the set

$$E = \{x \in C : Tx = \lambda x + (1 - \lambda)u_0 \text{ for some } \lambda > 1\}$$

is bounded, then the path $\{x_t : t \in (0,1)\}\$ defined by

$$x_t = tu_0 + (1-t)Tx_t$$

converges strongly to a fixed point of T.

Proof. In this case the mapping $A:C\to C$ defined by $Ax=u_0$ for all $x\in C$ is continuous strongly pseudocontractive with constant 0. The proof follows from Theorem 1.

- Remark 1. (1) Theorem 1 is also an extension of Theorem 5 of Morales [13] in terms of the space itself and the viscosity type method.
- (2) Corollary 1 generalizes the corresponding results in Ha and Jung [8], Moudafi [15], Reich [18], and Xu [22] to ones for pseudocontractive mappings.
- (3) Corollary 2 improves Theorem 1 of Xu [21], which is done for nonexpansive mapping and the inwardness condition, as well as Theorem 1 of Jung and Kim [9] for nonexpansive mappings under the additional assumption that C is a sunny nonexpansive retract of X.
- (4) In Theorem 1 and Corollary 1, boundedness of the set E can be replaced by the assumption that $F(T) \neq \emptyset$.

We now replace the fixed point property assumption, mentioned in Theorem 1 by imposing certain conditions on the space X or on the mapping T.

Theorem 2. Let X be a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $A:C\to C$ a continuous strongly pseudocontractive mapping with constant $k\in[0,1)$ and $T:C\to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. If T has a fixed point in C, then the path $\{x_t\}$ defined by (4) converges strongly to a fixed point of T, which is a unique solution of variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v)\rangle \leq 0 \text{ for all } v \in F(T).$$

Proof. To be able to use the argument of the proof of Theorem 1, we just need to show that the set M defined by (7) has a fixed point of g. Since $F(T) = F(g) \neq \emptyset$, let $v \in F(g)$. Then the set M_0 defined by

$$M_0 = \{ u \in M : ||u - v|| = \inf_{x \in M} ||x - v|| \}$$

is singleton since X is strictly convex. Let $M_0 = \{u_0\}$ for some $u_0 \in M$. Observe that

$$||gu_0 - v|| = ||gu_0 - gv|| \le ||u_0 - v|| = \inf_{x \in M} ||x - v||.$$

 \Box

Therefore $gu_0 = u_0$. We now follow the proof of Theorem 1.

Next we obtain a convergence of path described by (4) in which continuity assumption of operator T is weaken and convexity of C is dispensed.

Theorem 3. Let X be a reflexive Banach space with a weakly continuous duality mapping $J: X \to X^*$. Let C be a nonempty closed subset of $X, A: C \to C$ a continuous strongly pseudocontractive mapping with constant $k \in [0,1)$ and $T: C \to X$ a demicontinuous pseudocontractive mapping such that the equation

$$x = tAx + (1-t)Tx$$

has a solution x_t in C for each $t \in [0,1)$. Suppose the path $\{x_t\}$ is bounded. Then we have the following:

- (a) $\lim_{t \to 0^+} x_t = \tilde{x} \text{ exists},$
- (b) \tilde{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v)\rangle < 0 \text{ for all } v \in F(T).$$

Proof. (a) Since $\{x_t\}$ is bounded, it follows from reflexivity of X that there exists a subsequence $\{x_{t_n}\}\subseteq \{x_t\}$ such that $x_{t_n} \to z \in C$ as $t_n \to 0$, where $\{t_n\}$ is a sequence in (0,1) such that $\lim_{n\to\infty} t_n = 0$. Set $x_n := x_{t_n}$. As in Theorem 1, $g:C\to C$ a nonexpansive with F(T)=F(g). Also $x_n-gx_n\to 0$ as $n\to\infty$. Since J is weakly continuous, it follows from Lemma 4 that $z\in F(g)$. By (5), we get

$$||x_n - z||^2 \le \frac{1}{1 - k} \langle Az - z, J(x_n - z) \rangle.$$

Since J is weakly continuous duality mapping, it follows that $x_n \to z$ as $n \to \infty$.

We have already proved that there exists a subsequence $\{x_{t_n}\}$ of $\{x_t:t\in(0,1)\}$ that converges strongly to a point $z\in F(T)$. Now it remains to prove that the entire net $\{x_t\}$ converges strongly to z. Suppose, for contradiction, that there exists another sequence $\{x_{t_n'}\}\subset\{x_t\}$ such that $x_{t_{n'}}\to z'\neq z$ as $t_{n'}\to 0$. Then, we have $z'\in F(T)$. From (9), we have

$$\langle z - Az, J(z - z') \rangle \le 0$$
 and $\langle z' - Az', J(z - z') \rangle \le 0$.

This gives that z = z'. Therefore, $\lim_{t \to 0^+} x_t$ exists and $\lim_{t \to 0^+} x_t = z \in F(T)$.

(b) Since $\lim_{t\to 0^+} x_t = z$, it follows Proposition 2(b) and Lemma 7 that z is a unique point satisfying

$$\langle (I-A)z, J(z-v) \rangle \leq 0$$
 for all $v \in F(T)$.

Corollary 3 (Theorem 1.2, Schu [19]). Let X be a reflexive Banach space with a weakly continuous duality mapping $J: X \to X^*$. Let C be a nonempty closed convex bounded subset of $X, u \in C$ and $T: C \to C$ a continuous pseudocontractive mapping. Let $\{\lambda_n\}$ be a sequence in (0,1) with $\lim_{n \to \infty} \lambda_n = 1$. Then

(a) for each $n \in \mathbb{N}$, there is exactly one $x_n \in C$ such that

$$x_n = (1 - \lambda_n)u + \lambda_n T x_n,$$

(b) $\{x_n\}$ converges strongly to a fixed point of T.

Remark 2. By putting Ax = u for all $x \in C$ in Theorem 2 and Theorem 3, we can also obtain Theorem 2 and Theorem 3 of Morales and Jung [14] as Corollary 2.

4. Applications

In 1980, Reich [18] proved the following theorem.

Theorem R (Reich [18]). Let X be a uniformly smooth Banach space and C a nonempty closed convex subset of X. Let $T: C \to C$ be a nonexpansive mapping with a fixed point and let $z \in C$. For each $t \in (0,1)$, let x_t be given by $x_t = tz + (1-t)Tx_t$. Then $\{x_t\}_{0 < t < 1}$ converges to a fixed point of T as $t \to 0^+$. Thus,

$$Q(z) := s - \lim_{t \to 0^+} z_t$$

defines the unique sunny nonexpansive retraction form C onto F(T).

O'Hara, Pillay and Xu [16] introduced the Reich's property.

Definition 1. A Banach space X is said to have *Reich property* if for any closed and convex subset C of X, any nonexpansive mapping $T: C \to C$ with a fixed point and any $z \in C$, $\{x_t\}$ defined by $x_t = tz + (1-t)Tx_t$ converges strongly to a fixed point of T as $t \to 0^+$.

Thus, every uniformly smooth Banach space has Reich's property. Let C be a nonempty closed convex subset of a Banach space X and $T:C\to C$ a pseudocontractive mapping. Let Σ_C denote the set of all strongly pseudocontractive mappings $A:C\to C$ with constant $k\in[0,1)$. We now introduce the following property:

Definition 2. We say that a Banach space X has property (S) if for any closed convex subset C of X, any pseudocontractive mapping $T: C \to C$ with $F(T) \neq \emptyset$ and any $A \in \Sigma_C$, the path $\{x_t\}$ defined by (4) converges strongly to a fixed point of T as $t \to 0^+$.

The following theorem shows that property (S) plays a key role in the existence of sunny nonexpansive retraction.

Theorem 4. Let X be a smooth Banach space with property (S). Let C be a nonempty closed convex subset of X and $T: C \to C$ a pseudocontractive mapping with $F(T) \neq \emptyset$. If we define $Q: \Sigma_C \to F(T)$ by

$$Q(A) := \lim_{t \to 0^+} x_t, \quad A \in \Sigma_C,$$

then $\langle AQ(A) - BQ(B), J(Q(A) - Q(B)) \rangle \ge ||Q(A) - Q(B)||^2$ for all $A, B \in \Sigma_C$. In particular, if $A = u \in C$ is a constant, then Q is the sunny nonexpansive retraction from C onto F(T).

Proof. For any $A \in \Sigma_C$ and $t \in (0,1)$, let x_t be the unique point in C such that $x_t = tAx_t + (1-t)Tx_t$. By Property (S), $\lim_{t\to 0} x_t$ exists; hence $Q(A) = \lim_{t\to 0} x_t$. By Proposition 2(b), we have

$$\langle x_t - Ax_t, J(x_t - v) \rangle \le 0 \text{ for all } v \in F(T).$$

Taking the limit as $t \to 0^+$ and using Lemma 1, we obtain

$$\langle Q(A) - AQ(A), J(Q(A) - v) \rangle < 0.$$

Thus, for $A, B \in \Sigma_C$, we have

$$\langle Q(A) - AQ(A), J(Q(A) - Q(B)) \rangle \leq 0$$

and

$$\langle Q(B) - BQ(B), J(Q(B) - Q(A)) \rangle \le 0.$$

Adding these two inequalities, we get

$$\langle Q(A) - AQ(A) + BQ(B) - Q(B), J(Q(A) - Q(B)) \rangle < 0.$$

Therefore,

$$||Q(A) - Q(B)||^2 < \langle AQ(A) - BQ(B), J(Q(A) - Q(B)) \rangle.$$

If A = u and B = v then

$$\langle u - v, J(Qu - Qv) \rangle \ge ||Qu - Qv||^2.$$

By Lemma 2(c), Q is a sunny nonexpansive retraction from C onto F(T). \square

The following theorem extends Theorem R to one for pseudocontractive mapping. This also improves Theorem 5 of Morales [13].

Theorem 5. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X and $T:C\to X$ a continuous pseudocontractive mapping with $F(T)\neq\emptyset$. Suppose that every closed convex bounded subset of C has fixed point property for nonexpansive self-mappings. If T satisfies the weakly inward condition, then there exists a unique sunny nonexpansive retraction $Q:C\to F(T)$.

Proof. For any $u \in C$ and $t \in (0,1)$, let x_t be the unique point in C such that $x_t = tu + (1-t)Tx_t$. By Theorem 1, X has property (S) and hence by Theorem 4, there exists a unique sunny nonexpansive retraction form C onto F(T) which is given by $Q(u) = \lim_{t \to 0^+} x_t$.

We now generalize Theorem 3.10 of O'Hara, Pillay and Xu [16] to pseudo-contractive one.

Theorem 6. Let X be a reflexive Banach space with a weakly continuous duality mapping $J: X \to X^*$. C a nonempty closed convex subset of X and $T: C \to X$ a continuous pseudocontractive mapping with $F(T) \neq \emptyset$. If T satisfies the weakly inward condition, then there exists a unique sunny nonexpansive retraction $Q: C \to F(T)$.

Proof. The definition of the weak continuity of duality mapping J implies that X is smooth. For any $u \in C$ and $t \in (0,1)$, let x_t be the unique point in C such that $x_t = tu + (1-t)Tx_t$. By Corollary 4, X has property (S) and hence by Theorem 4, there exists a unique sunny nonexpansive retraction form C onto F(T) which is given by $Q(u) = \lim_{X \to 0} x_t$.

Finally, using Lemma 5, Theorem 1 and Theorem 3, we derive strong convergence theorems for firmly pseudocontractive mappings.

Theorem 7. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, $A: X \to X$ a continuous strongly pseudocontractive mapping with constant $k \in [0,1)$ and $T: X \to X$ continuous firmly pseudocontractive mapping. Suppose that every closed convex bounded subset of X has fixed point property for nonexpansive self mappings. Suppose also that the set

$$E' = \{x \in X : Tx = (2 - \lambda)x + (\lambda - 1)Ax \text{ for some } \lambda > 1\}$$

is bounded. Then we have the following:

(a) For each $t \in (0,1)$, there is a path $\{x_t\}$ in X defined by

$$x_t = tAx_t + (1-t)(2I-T)x_t$$

such that $\lim_{t\to 0^+} x_t = \tilde{x}$ exists,

(b) \tilde{x} is a fixed point of T and it is the unique solution of variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v) \rangle$$
 for all $v \in F(T)$.

Theorem 8. Let X be a reflexive Banach space with a weakly continuous duality mapping $J: X \to X^*$. Let $A: X \to X$ be a continuous strongly pseudocontractive mapping with constant $k \in [0,1)$ and $T: X \to X$ a demicontinuous firmly pseudocontractive mapping such that the equation

$$x = tAx + (1-t)(2I - T)x$$

has a solution x_t in C for each $t \in [0,1)$. Suppose the path $\{x_t\}$ is bounded. Then we have the following:

- (a) $\lim x_t = \tilde{x} \ exists$,
- (b) \tilde{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$\langle (I-A)\tilde{x}, J(\tilde{x}-v)\rangle \leq 0 \text{ for all } v \in F(T).$$

References

- [1] V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
- [2] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- [3] L. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Aacademic Publishers, 1990.
- [4] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
- , Nonlinear Functional Analysis, Spring-Verlag, Berlin, 1985.
- [6] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, Inc., 1984.
- [7] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
- [8] K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach space, J. Math. Anal. Appl. 147 (1990), no. 2, 330–339.
- [9] J. S. Jung and S. S. Kim, Strong convergence theorems for nonexpansive nonselfmappings in Banach space, Nonlinear Anal. 33 (1998), no. 3, 321-329.
- [10] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
- [11] R. H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
- [12] C. H. Morales, On the fixed point theory for local k-pseudocontractions, Proc. Amer. Math. Soc. **81** (1981), no. 1, 71–74.
- , Sreong convergence theorems for pseudo-contractive mapping in Banach spaces, Houston J. Math. 16 (1990), no. 4, 549–557.
- [14] C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3411-3419.
- [15] A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46-55.
- [16] J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal. 64 (2006), 2022-2042.
- [17] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bul. Amer. Math. Soc. 73 (1967), 591-597.
- [18] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
- [19] J. Schu, Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math. 19 (1993), no. 1, 107-115.
- [20] B. K. Sharma and D. R. Sahu, Firmly pseudo-contractive mappings and fixed points, Comment. Math. Univ. Carolinae 38 (1997), no. 1, 101–108.
- [21] H. K. Xu, Approximating curves of nonexpansive nonself-mappings in Banach spaces, C. R. Acad. Sci. Paris Sér. I. Math. 325 (1997), 151-156.

[22] _____, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 240–256.

Jong Soo Jung

DEPARTMENT OF MATHEMATICS

DONG-A UNIVERSITY

BUSAN 604-714, KOREA

 $E\text{-}mail\ address: \verb"jungjs@mail.donga.ac.kr"$

DAYA RAM SAHU

DEPARTMENT OF APPLIED MATHEMATICS

SHRI SHANKARACHARYA COLLEGE OF ENGINEERING AND TECHNOLOGY

Junwani, Bhilai - 490020, India

CURRENT ADDRESS

DEPARTMENT OF MATHEMATICS

BANARAS HINDU UNIVERSITY

Varanasi - 221005, India

E-mail address: sahudr@yahoo.com