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CONVERGENCE OF APPROXIMATING PATHS TO
SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING
NON-LIPSCHITZIAN MAPPINGS

JoNG Soo Juna! AND Dava Ram Sanu *

ABSTRACT. Let X be a real reflexive Banach space with a uniformly
Gateaux differentiable norm, C a nonempty closed convex subset of X, T :
C — X a continuous pseudocontractive mapping, and A : C — C a
continuous strongly pseudocontractive mapping. We show the existence
of a path {x:} satisfying x: = tAz¢ + (1 — )Tz, t € (0,1) and prove that
{z+} converges strongly to a fixed point of T, which solves the variational
inequality involving the mapping A. As an application, we give strong
convergence of the path {z:} defined by x¢ = tAx: + (1 — t)(2I — T)a¢ to
a fixed point of firmly pseudocontractive mapping 7.

1. Introduction

Let X be areal Banach space with dual X* and T be a mapping with domain
D(T) and range R(T) in X. Following Morales [12], the mapping T is called
strongly pseudocontractive if for some constant k¥ < 1 and for all z,y € D(T),

1) A =B)llz —yll <[ = T)() — (M = T) ()l

for all A > k; while T is called a pseudocontraction if (1) holds for k = 1. The
mapping T is called Lipschitzian if there exists L > 0 such that

[Tz — Ty|| < L||z — y|| for all z,y € D(T).

Otherwise, the mapping is called non-Lipschitzian. The Lipschitzian mapping
T is called nonexpansive if L = 1 and is called a contraction if L < 1. Every
nonexpansive mapping is a pseudocontractive. The converse is not true. The
example, Tz = (1—2z3)%,z € [0,1] is a continuous pseudocontraction which is
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not nonexpansive. Indeed,
3 3
1 1 15\ 2 3\?
T -TI{=)=l=) =(=
(#)-7(3)|-1(E) - ()

A mapping T with domain D(T) and range R(T) in X is called firmly
pseudocontractive if for all z,y € D(T),

llz —yll <1 = A)(z —y) + MTz - Ty

for all A > 0. Following Kato [10], we are able to find an equivalent definition
for firmly pseudocontractive operators. An operator T : D(T) — R(T) is
firmly pseudocontractive if and only if for every z,y € D(T), there exists
j(xz —y) € J(x — y) such that

(Tz =Ty, j(z ~y) > llz - 9|,
where J : X — 2X" is the normalized duality mapping which is defined by
J(u) = {j € X : (u, ) = [l 1l7]) = llull}

(see Browder [2] and Kato [10]). It is an immediate consequence of the Hahn-
Banach theorem that J(u) is nonempty for each u € X.

The firmly pseudocontractive mappings are characterized by the fact that a
mapping T is firmly pseudocontractive if and only if the mapping f =7 — I is
accretive (see Lemma, 5).

The concept of firmly pseudocontractive mapping was introduced by Sharma
and Sahu [20]. The mapping T : D(T) — R(T) is firmly pseudocontractive if
and only 27 — T is pseudocontractive (see Lemma 5).

In [15], Moudafi proposed a viscosity approximation method of selecting
a particular fixed point of a given nonexpansive mapping which is a unique
solution of a variational inequality in a Hilbert space. He proved the following
theorem:

|(15)% — (12)#]

64
>7_1 1
64~ [43 93|

Theorem M (Theorem 2.1, Moudafi [15]). Let C be a nonempty closed convex
subset of a Hilbert space H. Let T : C — C be a nonezpansive mapping and
J : C = C a contraction mapping. Let {z,} be the sequence defined by the
scheme
En
= T ny
1+e, T+ 1+€nfa:

where €,, 15 a sequence (0,1) with e, — 0. Then {x,} converges strongly to the
unique solution of the variational inequality:

(2) ((I-f)E,&—=z) <0 forall z € F(T).

Tn

In other word, & is the unique fired point of Pr(r)f.
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Recently, Xu [22] extended the viscosity approximation method proposed

by Moudafi [15] for a nonexpansive mappings in a uniformly smooth Banach
space.

Theorem X (Theorem 4.1, Xu [22]). Let C be a nonempty closed convex subset
of a uniformly smooth Banach space X, f € llc the set of all contractions on
C andT :C — C a nonexpansive mapping with F(T) # 0. Then the path {z.}
defined by

Ty = tf.'l?t + (1 — t)T.’Et, t e (O, 1)
converges strongly to a point in F(T). If we define @ : llc — F(T) by

Q(f) = Jm ze, f€lle,
then Q(f) solves the variational inequality:
(=R JQ(f) —v)) <0, felle andv e F(T).

It is well known that for certain applications the Lipschitzian assumption
of mapping becomes a rather strong condition. In view of this the following
natural question arises:

Question. Is it possible to replace contraction mapping f involving in varia-
tional inequality (2) by a non-Lipschitzian mapping A?

Motivated and inspired by the above question, we will consider a more gen-
eral situation. In this paper our purpose is to prove that in reflexive Banach
space X, for pseudocontractive mapping T, the path {z;} defined by

Ty = tA.’L't + (1 — t)T.Z’t

converges strongly to a fixed point of T, which solves the certain variational
inequality involving non-Lipschitzian mapping A. Using our results, we de-
rive strong convergence theorems for firmly pseudocontractive mappings. Our
results generalize and improve the results of Jung and Kim [9], Morales [13],
Morales and Jung [14], Moudafi [15], O’Hara, Pillay, and Xu [16], Reich [18],
Schu [19], Sharma and Sahu [20], and Xu [21, 22].

2. Preliminaries and lemmas
Recall that a Banach space X is said to be smooth provided the limit
o Nl tyll = llaf
t—0+ t
exists for each ¢ and y in S = {# € X : ||z|| = 1}. In this case, the norm
of X is said to be Gateauz differentiable. It is said to be wuniformly Gateauz
differentiable if for each y € S, this limit is attained uniformly for z € §. It is
well known that every uniformly smooth space (e.g., L, space, 1 < p < 00) has
uniformly Gateaux differentiable norm (see e.g., [3]).
When {z,} is a sequence in X, then x, — z (resp., &, — x, Tn Ao
will denote strong (resp., weak, weak*) convergence of the sequence {z,} to .
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Suppose that the duality mapping J is single valued. Then J is said to be weakly
sequentially continuous if, for each {z,} € X with z, — z, J(z,) = J(x).

A Banach space X is said to satisfy Opial’s condition (see for example [17])
if for each sequence {z,} in X which converges weakly to a point z € X we
have

liminf ||z, — || < liminf ||z, —y|| for ally € X.
n—oo n—o0

It is well-known that, if X admits a weakly sequentially continuous duality
mapping, then X satisfies Opial’s condition.

Let X be a Banach space and let T be a mapping with domain D(T) and
range R(T') in X. The mapping T is said to be demiclosed at a point p € D(T)
if whenever {z,} is a sequence in D(T') which converges weakly to a point
z € D(T) and {Tz,} converges strongly to p, then Tz = p. The mapping
T is said to be demicontinuous if, whenever a sequence {z,} in C' converges
strongly to x € C, then {T'z,} converges weakly to Tx. The set of fixed point
of T will be denoted by F(T').

Let C be a convex subset of X, D a nonempty subset of C, and P a retraction
from C onto D, that is, Px = z for each z € D. A retraction P is said
to be sunny if P(Px + t(x — Pz)) = Pz for each z € C and t > 0 with
Pz +t(x — Pz) € C. If the sunny retraction P is also nonexpansive, then D is
said to be a sunny nonexpansive retract of C.

Let C' be a nonempty closed convex subset of a Banach space X. For z € C,
let

Ic(z)={yeX:y=z+ XNz —2),2€ C and A > 0}.

Ic(z) is called the inward set of x € C with respect to C' (see, for example
[5]). Ic(z) is a convex set containing C. A mapping T : C — X is said to be
satisfying the inward condition if Tz € Ic(z) for all z € C, T is also said to
be satisfying the weakly inward condition if for each z € C, Tz € Ic(z) (Ic(x)
is the closure of I¢(z)). It is well-known (Lemma 18.1, Deimling [5]) that
T : C — X is weakly inward if and only if Ali%L A1 = Nz + ATz, C) =0
for all z € C, where d denotes the distance to C.

Recall that a Banach limit LZIM is a bounded linear functional on [°° such
that

|LIM]|| = 1,1inn_1)i£f t, < LIM,t, <limsup t,,

n—ro0
and LIM, t, = LIM, t,4; for all ¢, € I*°.
In what follows, we shall make use of the following lemmas.

Lemma 1 (Corollary 5.1, Cioranescu [3]). If X is a smooth Banach space,
then any duality mapping on X is norm to weak* continuous.

Lemma 2 (Lemma 13.1, Goebel and Reich [6]). Let C be a convex subset of a
smooth Banach space X, D a non-empty subset of C and P a retraction from
C onto D. Then the following are equivalent:

(a) P is a sunny and nonezpansive
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(b) (x — Pz,J(z—Px))y <0 foralzeC, z€D;
(¢) (z -y, J(Pz ~ Py)) > ||Px — Py||* for all 2,y € C.
Lemma 3 (Lemma 1, Ha and Jung [8]). Let X be a Banach space with a

uniformly Géteaux differentiable norm, C a nonempty closed convex subset of

X and {z,} a bounded sequence in X. Let LIM be a Banach limit andy € C.
Then

LIMy||zn = y|I* = min LIMy |z, - 2|*
if and only if
LIM, {z —y,J(zn —y)) <0 for all z € C.

Lemma 4 (Theorem 10.3, Goebel and Kirk [7]). Let X be a reflexive Banach
space which satisfies Opial condition, C a nonempty closed conver subset of
X and T : C — X a nonexpansive mapping. Then the mapping I — T is
demiclosed on C, where I is the identity mapping.

Lemma 5 (Lemma 2.2, Sharma and Sahu [20}). Let X be a Banach space and
T a mapping with domain and range in X. Then following are equivalent:

(a) T is firmly pseudocontractive;
(b) 2I — T is pseudocontractive;
(¢) T —1I is accretive.

Lemma 6 (Corollary 1, Deimling [4]). Let C be a nonempty closed subset of
a Banach space X and T : C — X a continuous strongly pseudocontractive
mapping with constant k € [0,1) satisfying

lim A™'d((1 = Az + A\T2,C) =0 for all z € C,
A—0T1
where d denotes the distance to C (equivalently, the weakly inward condition

under additional assumption that C is convex). Then T has a unique fized
point.

Lemma 7. Let C be a nonempty closed convex subset of a smooth Banach
space X. Let A : C — C be a continuous strongly pseudocontractive with
constant k € [0,1). Then variational inequality problem VIP(I — A,C) :

to find u € C such that (I — A)u,J(u—1z)) <0 forallz e C
has at most one solution.
Proof. Let z* and y* be two distinct solutions of VIP(I — A, C). Then

(z* — Aa”™, J(z" —y")) <0 and (y" —Ay",J(y" —z7)) <0.
Adding these inequalities, we get

(" —y" — (A" — Ay*), J(z" —y")) <0,
which implies that
o™ — |2 < (Ae” — Ay", J(a* — y7)) < Blle" — ¥,

a contradiction. Therefore, z* = y*. O
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3. Main results
Before proving main results we need the following propositions:

Proposition 1. Let C be a nonempty closed conver subset of a normed space
X. Let A: C — C be a mapping and T : C — X another mapping satisfying the
weakly inward condition. Then for each A € (0,1), the mapping T{ : C — X
defined by

Tdz=(1-NAz + X Tz, z€C
satisfies the weakly inward condition.
Proof. Let x € C and ¢ > 0. Since T is weakly inward, there exists y € Io(x)
such that |ly — Tz|| < &, and since C is convex, there exists fo such that
=(1—-t)z+ty € Cfor 0 <t <ty. For these ¢ we have
d((1 -tz +tTz,C) < ||(1 — )z + tTx — 2| < te.
Moreover, since C' is convex,
A-t+ M)z + (1 - ANtAz + Az
14X

for all A € (0,1) whenever ¢t € (0,1). Set a :=
have

eC

Wy =

1+)\ and let ¢ € (0,1). Then we

d((1 - a)z + aTz,C)
< 1 = @)z + aTi s — wy|
= |1+ X = t)z + tT2 — (14 Nw,||/(1 + N)
=1+ A=)z +t[(1 - M)Az + ATz] — (1 + Nwe||/(1+ A)

and hence hr{r)x+ « 1d((1—a)m+anx, C) = 0. By (Lemma 18.1, Deimling [5]),
a—

T satisfies the weakly inward condition. O

Proposition 2. Let C be a nonempty closed conver subset of a Banach space

X. Let A: C — C be a continuous strongly pseudocontractive with constant

ke€|0,1) and T : C — X a continuous pseudocontractive mapping satisfying
the weakly inward condition. Then

(a) for each t € (0,1), there exists unique solution x; € C of equation
(3) z=tAz + (1 - t)T'z,

(b) Moreover, if v is a fized point of T, then for each t € (0,1), there exists
jlzy —v) € J(zy — v) such that

< Axta (xt - ’U)) < Oa
(c) {zs} is bounded.



APPROXIMATING PATHS TO SOLUTIONS OF VARIATIONAL INEQUALITIES 383

Proof. (a) For each t € (0, 1), the mapping T/* : C — X defined by
Tz =tAz + (1 - )Tz, z € C

is continuous strongly pseudocontractive with constant 1 — #(1 — &) € (0,1).
Indeed, for z,y € C, there exists j(z — y) € J(z — y) such that

(Te = Ty, j(z - y)) = {4z — Ay, j(z — y))
+ (A= t)Te - Ty, jlz ~y))
< thllz — ylI? + (1 = O)||Tz = Tyllllz -yl
< (1=t -k)llz ~yll*
From Proposition 1, T/ satisfies the weakly inward condition. Thus, by Lemma
6, there exists a unique fixed point x; € C of T/ such that
(4) xy = tAz, + (1 — )Tz

(b) Suppose that v is a fixed point of T. Since T is pseudocontractive, for
jlzy —v) € J(zy — v), we have

(@t = Ty, j(xe —v)) = (2 — v +Tv =Ty, j(z: — 0))
= |lz; —v|* = (Tx; — Tv,j(z: — v)) > 0.
Hence from (4) we have
(xr — Azy, j(xp —v)) = (1 = ) {Txy — Azy, j(z: — v))
<A =t)(Txs — z¢ + 2 — Ay, j(21 — V),
which implies that
(2 — Azy, j(ze —v)) < 0.

(c) By strong pseudocontractivity of A, there exists j(z; — v) € J(z: — v)
such that

(Azy — Av, j(2s — v)) < K|z — 0]}
Using Proposition 2(b), we obtain
lz: — o> = (24 — v, 5(2: — v))
= (xy — Az, j(z: — v)) + {4z — Av, j(zr — v))
+ (Av — v, j(ze — v))
< kllz: — v||? + (Av — v, j(z — v)).
Thus,

1 .
(5) llze —wlf? < m(A"U - v, j(ze = v)),
which yields
1
|| € ——[|Av — v]|.
et —vll € 1o~ o]
Therefore, {x;} is bounded. |
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Theorem 1. Let X be a reflexive Banach space with a uniformly Gateaux
differentiable norm, C a nonempty closed convex subset of X, A:C — C a
continuous strongly pseudocontractive mapping with constant k € [0,1) and
T : C — X a continuous pseudocontractive mapping satisfying the weakly
inward condition. Suppose that every closed convex bounded subset of C has
fized point property for nonezpansive self-mappings. Suppose also that the set

E={zeC:Tz =X+ (1- \Ax for some A > 1}
is bounded. Fort € (0,1), let {x:} be the path defined by (4). Then we have
the following:
(a) lim z; = & exists,
t—0+
(b) % is a fized point of T and it is the unique solution of the variational
inequality:
(I —A)z,J(Z —v)) <0 for allv e F(T).
Proof. (a) It follows from Theorem 6 of [11] that the mapping 2I — T has a
nonexpansive inverse, denoted by g, which maps C into itself with F(T) = F(g).

By Proposition 2(c), {z:} is bounded and hence, the sets {T'z; : t € (0,1)} and
{Az; : t € (0,1)} are also bounded. By (4), we have

||.'L't — T.Z't” = t”AIIIt — T.fl?tll —0ast— 0+,
which implies that
(6) T —gry > 0ast— 0T,

Since X is reflexive, there exists a weakly convergent subsequence {z, } C {z:}
such that z;, — 2, where {¢,} is a sequence in (0,1) such that ¢, — 0 as
n — o0.

Now define the function ¢ : C — R by

o(z) := LIM, ||z, — z|?>, z¢€C.

Since X is reflexive, p(z) = o0 as ||z|| — oo, and ¢ is continuous convex
function, by Theorem 1.2 of [1, p. 79] we have that the set

(7 M:={yeC:ply) = inf p(z)}

is nonempty. M is also closed convex and bounded. Moreover, M is invariant
under g. In fact, we have for each y € M,

©(gy) = LIM, ||z — gyl?
= LIM,||gzn — gyl
< LIMy||lzn = yl1* = ¢(y).

So, by the hypothesis, there exists a fixed point u of g in M. By Lemma 3, we
have

LIM,{(z,J(z, —u)) <0 for all z € C.
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In particular,
(8) LIM,(Au — u, J(z, —u)) <0.
Observe that
lzn — ul|* =(xn — Az, J(zp — w)) + (A, — Au, J(zp — u))

+ (Au —u, J(z, — u)).

By pseudocontractivity of T,
(1= k)||zn —ul|* < (zn — Azp, J(@n —u)) + (Au — u, J (2, — u)).
From (8) and Proposition 2(b), we obtain
LIM,||z, — u|* <0.
Therefore, there exists a subsequence {zn, } of {z,} such that z,, — u. Assume
that there is another subsequence {z,;} of {z,} such that z,, — @. Since
T, — gx, — 0, it follows that @ € F(g). Using Proposition 2(b), we have that
9) (x4 — Azg, J(zy —v)) <0 forall v e F(T).
By norm to weak* uniform continuity of J, we obtain
(u—Au, J{u—4)) <0 and {(a-— Aa,J(@—u)) <O0.

Adding these two inequalities yields that

(u—a+ Al — Au, J(u —a)) <0

This implies that
llu — all* < kllu — al*.
Since k € [0,1), it follows that uw = @. Thus, {x,} converges strongly to u.
We finally prove that the entire net {z;} converges strongly. To this end,
we assume that {t, } is another subsequence in (0,1) such that z; , — ' as
tw — 0. By (6), we obtain ' € F(T). From (9), we have that

(u— Au,J(u ~u')) <0and (v — Au', J(u' —u)) <0.
We must have u = u'. Therefore, {z;} converges strongly to u € F(T').
(b) Since z; — u € F(T), it follows from Proposition 2(b) and Lemma 7
that « is a unique point satisfying
(u— Au, J(u—v)) <0 for all v € F(T).
|
Corollary 1. Let X be a reflexive Banach space with a uniformly Gateaux
differentiable norm, C a nonempty closed convex subset of X, A: C = C a
continuous strongly pseudocontractive mapping with constant k € [0,1) and
T : C — C a continuous pseudocontractive mapping. Suppose that every

closed convex bounded subset of C' has fized point property for nonexpansive
self-mappings. Suppose also that the set

E={ze€C:Tz =X x+(1-NAz for some A > 1}
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is bounded. Fort € (0,1), let {z,} be the path defined by (4). Then we have
the following:
(a) lim z; = & exists,
t—0t
(b) % is a fized point of T and it is the unique solution of the variational
inequality:

(I-A)z,J(Z-v) <0 for allve F(T).

Corollary 2 (Theorem 1, Morales and Jung [14]). Let X be a reflexive Banach
space with a uniformly Gateaux differentiable norm, C nonempty closed convex
subset of X and T : C — X a continuous pseudocontractive mapping satisfying
the weakly inward condition. Suppose every closed conver bounded subset of C
has fized point property for nonexpansive self mappings. If there exists ug € C
such that the set

E={zeC:Tz=Xxx+ (1 - Nug for some X > 1}
is bounded, then the path {z; : t € (0,1)} defined by
xy = tug + (1 — )Tz
converges strongly to a fized point of T.

Proof. In this case the mapping A : C — C defined by Az = up for all z € C' is
continuous strongly pseudocontractive with constant 0. The proof follows from
Theorem 1. O

Remark 1. (1) Theorem 1 is also an extension of Theorem 5 of Morales [13] in
terms of the space itself and the viscosity type method.

(2) Corollary 1 generalizes the corresponding results in Ha and Jung [8],
Moudafi [15], Reich [18], and Xu [22] to ones for pseudocontractive mappings.

(3) Corollary 2 improves Theorem 1 of Xu [21], which is done for nonexpan-
sive mapping and the inwardness condition, as well as Theorem 1 of Jung and
Kim [9] for nonexpansive mappings under the additional assumption that C is
a sunny nonexpansive retract of X.

(4) In Theorem 1 and Corollary 1, boundedness of the set E can be replaced
by the assumption that F(T') # 0.

We now replace the fixed point property assumption, mentioned in Theorem
1 by imposing certain conditions on the space X or on the mapping T'.

Theorem 2. Let X be a reflexive and strictly convex Banach space with a
uniformly Gateauz differentiable norm, C' a nonempty closed convexr subset of
X, A:C = C a continuous strongly pseudocontractive mapping with constant
k€i0,1) and T : C = X a continuous pseudocontractive mapping satisfying
the weakly inward condition. If T has a fized point in C, then the path {z:}
defined by (4) converges strongly to a fized point of T, which is a unique solution
of variational inequality:

(I = A)z, J(% — v)) <0 for all v € F(T).
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Proof. To be able to use the argument of the proof of Theorem 1, we just
need to show that the set M defined by (7) has a fixed point of g. Since
F(T')=F(g) # 0, let v € F(g). Then the set M, defined by

M, = sy — = i —
0= {ueM:lu-v|= inf |l - v}

is singleton since X is strictly convex. Let My = {ug} for some uy € M.
Observe that

—v|| = - < —v|| =i —vll.
lguo = vll = llguo ~ goll < Jluo vl = inf |z = ol
Therefore gup = ug. We now follow the proof of Theorem 1. O

Next we obtain a convergence of path described by (4) in which continuity
assumption of operator T is weaken and convexity of C is dispensed.

Theorem 3. Let X be a reflexive Banach space with a weakly continuous
duality mapping J : X — X*. Let C be a nonempty closed subset of X, A: C —
C a continuous strongly pseudocontractive mapping with constant k € [0,1) and
T :C — X a demicontinuous pseudocontractive mapping such that the equation

r=tAz+ (1 —t)Tx
has a solution x: in C for each t € [0,1). Suppose the path {z.} is bounded.
Then we have the following:
(a) lim z; =% emists,
t—0t
(b) & is a fized point of T and it is the unique solution of the variational
inequality:
(I-A)z,J(& —v)) <0 for allve F(T).
Proof. (a) Since {x:} is bounded, it follows from reflexivity of X that there

exists a subsequence {z;, } C {#:} such that z;, — 2z € C as ¢, — 0, where {t,}
is a sequence in (0, 1) such that lim ¢, = 0. Set z, := x,. As in Theorem 1,
n—>00

g : C' = C a nonexpansive with F(T) = F(g). Also z,, — gz, & 0 as n — oo.
Since J is weakly continuous, it follows from Lemma 4 that z € F(g). By (5),
we get

I = 2l < T2—(Az — 2, (20 — 2))

Since J is weakly continuous duality mapping, it follows that z,, — z asn — oo.

We have already proved that there exists a subsequence {z;,} of {z; : t €
(0,1)} that converges strongly to a point z € F(T). Now it remains to prove
that the entire net {z,} converges strongly to z. Suppose, for contradiction,
that there exists another sequence {z; ,} C {z;} such that z; , — 2’ # z as
tn — 0. Then, we have 2’ € F(T). From (9), we have

(z— Az, J(z—2")) <0and (' - A2, J(z —2")) < 0.

This gives that z = 2'. Therefore, lim z; exists and lim z; = z € F(T).
t—0t t—0t
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(b) Since liI(I)l+ xy = %, it follows Proposition 2(b)-and Lemma 7 that z is a
t—
unique point satisfying
(I —A)z,J(z—v)) <0forallve F(T).
O

Corollary 3 (Theorem 1.2, Schu [19]). Let X be a reflexive Banach space with
a weakly continuous duality mapping J : X — X*. Let C be a nonempty closed
convez bounded subset of X,u € C and T : C — C a continuous pseudocon-
tractive mapping. Let {\,} be a sequence in (0,1) with nll)n;o An =1. Then

(a) for each n € N, there is exactly one x,, € C such that
Tn =1 —=Ap)u+ ATy,
(b) {xn} converges strongly to a fixed point of T.

Remark 2. By putting Az = u for all x € C in Theorem 2 and Theorem 3,
we can also obtain Theorem 2 and Theorem 3 of Morales and Jung [14] as
Corollary 2.

4. Applications
In 1980, Reich [18] proved the following theorem.

Theorem R (Reich [18]). Let X be a uniformly smooth Banach space and
C' a nonempty closed convex subset of X. Let T : C — C be a nonexpansive
mapping with a fixved point and let z € C. For each t € (0,1), let z; be given
by v = tz + (1 — t)Tz:. Then {x:}o<t<1 converges to a fixed point of T as
t = 0. Thus,
=s— i
Q(Z) s t—1>I(I)1+ #
defines the unique sunny nonexpansive retraction form C onto F(T).
O’Hara, Pillay and Xu [16] introduced the Reich’s property.

Definition 1. A Banach space X is said to have Reich property if for any
closed and convex subset C of X, any nonexpansive mapping T : C' — C with
a fixed point and any z € C, {2} defined by z, = tz + (1 — ¢)Tx, converges
strongly to a fixed point of T as t — 07.

Thus, every uniformly smooth Banach space has Reich’s property. Let C
be a nonempty closed convex subset of a Banach space X and T : C — C a
pseudocontractive mapping. Let ¥ denote the set of all strongly pseudocon-
tractive mappings A : C — C with constant k € [0,1). We now introduce the
following property:

Definition 2. We say that a Banach space X has property (S) if for any
closed convex subset C' of X, any pseudocontractive mapping T : C' — C with
F(T) # 0 and any A € ¢, the path {z;} defined by (4) converges strongly to
a fixed point of T as t — 07.
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The following theorem shows that property (S) plays a key role in the exis-
tence of sunny nonexpansive retraction.

Theorem 4. Let X be a smooth Banach space with property (S). Let C be
a nonempty closed convex subset of X and T : C — C a pseudocontractive
mapping with F(T) # 0. If we define Q : X — F(T) by

Q(4) == lim z;, A€ 3¢,

t—0+

then (AQ(A)— BQ(B), J(Q(4) - Q(B)) > [|Q(4) - Q(B)|? for all A, B € T¢.
In particular, if A = u € C is a constant, then () is the sunny nonexpansive
retraction from C onto F(T).

Proof. For any A € ¥ and t € (0, 1), let x; be the unique point in C' such that
zy = tAz, + (1 — t)Tz,. By Property (S), }1_1}(1) x4 exists; hence Q(A) = %1_% z;.
By Proposition 2(b), we have
(xy — Axy, J(xy — v)) <0 for all v € F(T).
Taking the limit as ¢ — 0% and using Lemma 1, we obtain
(Q(A) — AQ(A4), J(Q(4) —v)) <0.
Thus, for A, B € X, we have
(Q(4) — 4Q(4), J(Q(4) —Q(B))) <0
and
(Q(B) — BQ(B), J(Q(B) — Q(A4)))
Adding these two inequalities, we get
(Q(A) — AQ(A) + BQ(B) — Q(B), J(Q(A) — Q(B))) < 0.
Therefore,
1Q(4) = Q(B)II* < (AQ(A) — BQ(B), J(Q(A) — Q(B))).
If A=w and B = v then
(u =0, J(Qu — Qu)) > ||Qu - Qu|*.

By Lemma 2(c), @ is a sunny nonexpansive retraction from C onto F'(T). O

IA

0.

The following theorem extends Theorem R to one for pseudocontractive
mapping. This also improves Theorem 5 of Morales [13].

Theorem 5. Let X be a reflexive Banach space with a uniformly Géteauz
differentiable norm, C a nonempty closed convex subset of X and T : C = X
a continuous pseudocontractive mapping with F(T) # 0. Suppose that every
closed convexr bounded subset of C has fized point property for nonexpansive
self-mappings. If T satisfies the weakly inward condition, then there exists a
unique sunny nonezpansive retraction Q : C — F(T).
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Proof. For any u € C and t € (0,1), let z; be the unique point in C' such
that x; = tu + (1 — t)Tz;. By Theorem 1, X has property (S) and hence by
Theorem 4, there exists a unique sunny nonexpansive retraction form C onto
F(T') which is given by Q(u) = tl_i)r& Ty, O

We now generalize Theorem 3.10 of O’Hara, Pillay and Xu [16] to pseudo-
contractive one.

Theorem 6. Let X be a reflerive Banach space with a weakly continuous
duality mapping J : X — X*. C a nonempty closed convexr subset of X
and T : C' = X a continuous pseudocontractive mapping with F(T) # {.
If T satisfies the weakly inward condition, then there exrists a unique sunny
nonezpansive retraction ¢} : C — F(T).

Proof. The definition of the weak continuity of duality mapping J implies that
X is smooth. For any v € C and t € (0,1), let z; be the unique point in C such
that z; = tu + (1 — ¢)T'z;. By Corollary 4, X has property (S) and hence by
Theorem 4, there exists a unique sunny nonexpansive retraction form C onto
F(T') which is given by Q(u) = tgrgl+ Tt O

Finally, using Lemma 5, Theorem 1 and Theorem 3, we derive strong con-
vergence theorems for firmly pseudocontractive mappings.

Theorem 7. Let X be a reflexive Banach space with a uniformly Gateauz dif-
ferentiable norm, A: X — X a continuous strongly pseudocontractive mapping
with constant k € [0,1) and T : X — X continuous firmly pseudocontractive
mapping. Suppose that every closed conver bounded subset of X has fized point
property for nonexpansive self mappings. Suppose also that the set

F'={zeX:Te=2- Nz + (A-1)Az for some X > 1}
is bounded. Then we have the following:
(a) For eacht € (0,1), there is a path {z:} in X defined by
Ty = tAiUt + (1 - t)(2I — T)illt
such that lim z, = ¥ ewists,
t—0+

(b) & is a fized point of T and it is the unique solution of variational

inequality:

(I —-A),J(Z —v)) for allv € F(T).

Theorem 8. Let X be a reflexive Banach space with a weakly continuous du-
ality mapping J : X — X*. Let A: X — X be a continuous strongly pseudo-
contractive mapping with constant k € [0,1) and T : X - X a demicontinuous
firmly pseudocontractive mapping such that the equation

z=tAdz+(1-t)(2I - T)z
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has a solution x; in C for each t € [0,1). Suppose the path {x,} is bounded.
Then we have the following:

20]

(21]

(a) lim z; = % emists,
t—0+

(b) Z is a fized point of T and it is the unique solution of the variational
inequality:

(I —A)z,J(& —v)) <0 for allve F(T).
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