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ON SOME NEW NONLINEAR RETARDED INTEGRAL
INEQUALITIES WITH ITERATED INTEGRALS AND THEIR
APPLICATIONS

QING-HuA MA AND Josip PECARIC

ABSTRACT. Some new nonlinear retarded integral inequalities of Gronwa-
1l-like type are established, which mainly generalized some results given
by Cho, Dragomir and Kim (J. Korean Math. Soc. 48 (2006), No. 3,
pp- 563-578) and can be used in the analysis of various problems in the
theory of certain classes of differential equations and integral equations.
Applications examples are also indicated.

1. Introduction

Integral inequalities are indispensable for us in the quantitative study of vari-
ous differential equations and integral equations. Besides the famous Gronwall-
Bellman inequality and its first nonlinear generalization by Bihari (see [1], [2],
[13], [20], [21]), there are several other very useful Gronwall-like inequality.
Haraux [12, Corollary 16, p.139] derived a Gronwall-like inequality and used it
to prove the existence of solutions of wave equations with logarithmic nonlin-
earities. On the other hand, Engler [11] utilized the following slight variant of
inequality due to Haraux [12] in the study of global regular solutions for the
dynamic antiplane shear problem in nonlinear viscoelasticity.

Lemma 1.1. Let ¢ > 1 and a € C(I = [0,T),Ry), Ry = [0,00), and assume
that the function w — [1,00) satisfies

w(t) <e <1 + /Ot a(s)w(s)log w(s)ds) ,tel.
Then ,
w(t) < cexp (/0 a(s)ds) , tel
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Recently, Cho, Dragomir and Kim [6] proved the following Haraux-Engler-
Bykov type inequality and other interesting related results:

Lemma 1.2. Let u(t), b(t), k(t,s) and h(t,s, ) be nonnegative continuous for
a<o<71<Ls5<t< P withu(t) > 1. Suppose that

W u(t) <a+ t/"‘ Hs)uts) log u(s)ds + /a t ( /a " k(s, T)u(r) logu(T)dT) ds

[ ([ senamomsnow) )

fort € I = [a, 3], where a > 1 is a constant. Then, for any t € I,

u(t) < anP(A(t))’

A(t):/: ds+/ (/kSTdT)ds
([ womos) ar) as

The aim of the present paper is to establish some new nonlinear retarded
inequalities, which generalize the inequalities discussed in the above lemmas
and other results appeared in [6] and [14, 18]. Application examples are also
included.

where

2. Some new nonlinear retarded inequalities

In what follows, R denotes the set of all real numbers, R, = [0, +00), B; =
[1,4+00),I = [, ] are the give subsets of R. C*(M,S) denotes the class of
all i-times continuously differentiable functions defined on set M with range in
the set S(i =1,2,...) and C°(M, S) = C(M, S).

Lemma 2.1. Letu(t),b(t), k(t, s) and h(t, s, T) be nonnegative continuous func-
tions fora <o <7 <s<t<B. Let ¢(t) € CHI,I) with ¢(t) < t and g(u)
be a nonnegative and nondecreasmg continuous functions for u € Ry with
g{u) > 0 for u > 0. Suppose that

(1) o(t) s
w(t) < a+ /¢ ., Po)s(utonds + /¢ . ( /¢ . k(s,T)g(u(T))dT) ds

. ij ( /4,;) < /¢ ;) h(s,T, o-)g(u(cr))da) dT) ds

2.1)
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fort € I, where a > 0 is a constant. Then

6(t) (t) s
G(a) +/ b(s)ds +/ (/ k‘(s,r)d7) ds
1Y) ¢(c) é(a)
o(t) s T
+/ (/ ( h{s,T, a)da) dT) ds]
¢(@) \Jo(a) \Jo(e)

for t € [a,Ty], where

u(t) < G71

(2.2)

(2.3) G(r):/rg%i—), r>rg>0

G~ denotes the inverse function of G, and Ty € I is chosen so that the quantity
in the square brackets of (2.2) is in the range of G.

Proof. Let a > 0 and define a function v;(¢) by the right-hand side of (2.1).
Then v1(a) = a,v:(t) is positive and nondecreasing, u(t) < vy (¢) for t € I and

é(t)

vi () = b(o(t))g(u((t)¢' (t) + </¢< ) k(¢(t),7)g(U(T))dT) ¢'(t)

#(t) ,
' </¢<a> (/¢<a> Mo, ")9(“(0))d"> dT) ¢'(t)

é(t)
< B((0)a(wr (6()8) (1) + </¢< )

() -
+ (/4)(&) </¢(a) h(g(t), T, U)g('Ul(o'))d0-> dT) (1)

é(t)
< g(vi(?)) [b(¢(t))¢'(t) + </¢( : k(¢(t)7f)d7> ¢'(t)

o(t) T
+ (/qs(a) </¢(a) h(o(t), T, 0)d0> dT) ¢ (t)] ,

ie.,

3(t)

< b(o(1)¢' (t) + </¢< : k((ﬁ(t),f)dT) ¢'(t)

o(t) T
h ,T,0)do | dr | ¢'(¢).
+(/¢(a) (/M (6(t), 7,0) ) >¢<>
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Setting ¢ = s and then integrating from « to ¢,¢ € I, changing the variable and
using the definition of function G we get

3(t)

G(vni(t)) < G(a) + /4)( : b(s)ds + /;(:) </¢: )k(s,r)d7’> ds

o(t) s T
+/ / / h(s,T,0)do | dr | ds
() é(a) o)

#(t)

#(2) s
n(t) <G [G(a) + /¢(Q) b(s)ds + /%(a) (/¢(a) k(s,r)dT) ds

o(t) s T
+/ / h(s,r,0)do | dr | ds
#(a) \Jé(e) \Jo(a)

for t € [@,T1]. Now by u(t) < v1(¢) and the last inequality, we get the desired
inequality (2.2) for a > 0. By continuity, (2.2) also holds for any a > 0. O

or

Theorem 2.2. Let a,u,b,k,h,g and ¢ be as in Lemma 2.1. Let ¢ € C*(R,,
R.) with ¢'(u) > 0 and ¢'(u) is increasing for u > 0. Suppose that

#(2)

oult) < a+ / b(s)¢ (u(s))g(u(s))ds

¢(a)

o(t) s
(2.4) + /¢ . ( /¢ . k(s,rw'(u(r))g(u(r))dr) ds

é(t) s T
h(s,1,0)¢ (u(o o))do | dr | ds
n /¢ . ( /¢ (a)(m) (5,7,0)¢ (u(0))g(u(o)) ) )

forteI. Then

#(t)

(t) s
u(t) < G [G(go_l(a)) -I-/¢( ) b(s)ds +/¢:5 ) </¢( )k(s,7’)d7'> ds

#(t) s T
+/ / / h(s,7,0)do | dr | ds
é(cx) #(c) \J ¢(a)

fort € |a, Tz], where Ty € I is chosen so that the quantity in the square brackets
of (2.5) is in the range of G, G and G~ are as in Lemma 2.1.

(2.5)

Proof. Let a > 0 and define a function v (#) by the right-hand side of (2.4).
Then v2(a) = a,v2(t) is positive and nondecreasing, u(t) < ¢~ (v2(t)) fort € I
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b(p(t))¢ (u((t)))g(u((t)))¢' (t)

¢(t

+ ( / K60, 1) (w(r)g ulr))d ) ¢ (0
#(a)

+ ( [ ( h(o(t),7 )¢ <u(a>>g<u<a>>da> d7> 40
o(a (a)

b(o(B)' T (wa(@O)lgle™ (GOS0
ot

+ ( @)l <r>>]df> 0
¢(a)
#(t)

+ ( ( )so'[so*(vz(a))]g[w<vz<a>>]da) df) 10
¢(a) 4>(O¢)

< @'l v (0)] [b(o(1)) gl ™ (v2(6(1))]' (1)

&(t) T
+ L . (/d) RO <>>]da) dr>¢<>],
ie.,
vh(t
o (wa(0)]
< b)) gle (02 (B))]F ()
2O+ ( [ k<¢<t>,r>g[so—1<v2<r>>1dv> 20
é(a)

(A?it) ( / h(¢ o (o))]do) dr) ' (t).

Observe that for any continuously differentiable and invertible function f(£),
by a change of variable 7 = f~1(£), we have

A L P
@7) / RG] =/ Fgm=nre=fT @ e

Setting ¢ = s in (2.6), integrating with respect to s from a to ¢t and using (2.7)
to the left-hand side and changing variable in the right-hand side we obtain

‘ #(t)
o (0a(t) < ™ (@) + /¢ ., o™ walo)las
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é(t) s
-1
+/¢(a) (A(a) k(s,T)gly (U2(7'))]d'r> ds

@(t) s T
h(s,r,o “Lwy(o))|de | dr | ds.
+/¢(a) (A(Q)(A(a) (5,7, 0)glo L (13(0))] ) )

Now, using Lemma 2.1 to the last inequality we have

#(1)

#(t) s
e N (wa(t)) < G71 [G(go_l(a)) +/¢( ) b(s)ds + L( ) </¢( )k(s,v‘)dr) ds

(1) s T
+/ / / h(s,7,0)do | dr | ds
¢(a) \Jo(a) \J¢(a)

for t € [, T»]. By u(t) < ¢ 1(v2(t)), we get the desired inequality (2.5). The
case a > 0 follows as mentioned in the proof of Lemma 2.1. O

Letting ¢(u) = w?(p > 1 is a constant) in Theorem 2.2, we obtain the follow-
ing Ou-lang type retarded integral inequality with iterated integrals. About
Ou-lang type inequalities and their generalizations and applications, one can
see [21].

Corollary 2.3. Let a,u,b,k,h,g and ¢ be as in Lemma 2.1, p > 1 be a con-
stant. Suppose that

o(t)

uP(t) < a+/ b(s)uP~1(s)g(u(s))ds

#(a)

o(t) s
(2.8) + /¢(a) (/M)k(s,f)up 1(T)Q(U(T))dT> ds

#(t) s ,
p—1 oNdo
+/¢<a> </¢<a> </¢<a> (s, 7,0)u" " (0)g(u(0))d )a) as

forte€I. Then

6(t) é(2) s
u(t) < G- [G(aup)+ [ [ ( [ ke dT) N
$(e) P $(e) \Jo(@) P

(%) s T
+ / ( / < / h(s, 7,9) da) dT) ds}
s@ \Jo@ \Jo(@y P

fort € [a, T3], where Ts € I is chosen so that the quantity in the square brackets
of (2.9) is in the range of G, G and G~! are as in Lemma 2.1.

(2.9)
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Corollary 2.4. Let b,k,h,g and ¢ be as in Lemma 2.1, a > 1 and p > 0 be
constants and u € C(I, Ry). Suppose that

#(2)

() < a+ /¢< : b(s)uP(s)g(logu(s))ds

#(t) s
(2.10) + /¢(a) </¢(a)k(s,r)u”(r)g(logu(r))d"r) ds

() s T
his, T, 0)uP(o)g(l o))do | dr ) d
+/¢(Q) (L(a></¢<a)( yu? (0)g(log u(0)) > )

forteI. Then
(2.11)

B(t) B(¢) s
u(t) S €Xp <G_l l:G(—l' lOga) +/ @ds +/ (/ k($7T)dT> ds
p #a) P éa) \Jo@ P

" /qj:) </¢ja) (/¢>:a) h(s’;’ : dU) dT) dS:D

fort € [, T4], where Ty € I is chosen so that the quantity in the square brackets
of (2.9) is in the range of G, G and G~ are as in Lemma 2.1.

Proof. Taking v(t) = logu(t), then inequality (2.10) reduces to

#(t)

exp(pu(t)) < a+ /¢ LCEEOTEnIT

é(t) s
+/¢(a) </¢(o¢) k(s, ) exp(pzv(r))g(v(T))dT> ds

o(t) s T
h(s,7,0)exp(pv(c))g(v{o))do | dr | d
+/¢(a) (A(Q)(A(a) (s, 7,7) exp(p(0))g(v(0) ) ) s

which is a special case of inequality (2.4) when » = exp(pv). By Theorem 2.2,
we get the desired inequality (2.11) directly. O

Remark 2.1. (i) When p =1, g(u) = u and ¢(t) = ¢, from Corollary 2.4 we can
derive Theorem 2.1 [6].

(ii) If constant a is placed by a nondecreasing continuous function a(t) on
I, all conclusions in Lemma 2.1 to Corollary 2.4 are still valid.

Theorem 2.5. Let u,b,k, h and ¢ be as in Corollary 2.4, g be as in Lemma
2.1 with the subadditivity and multiplicity and = € C(I, R1). Suppose that

é(t)
uP(t) < w(t){a—i— /d>( ) b(s)ul(s)g{logu(s))ds
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o(t) e
k(s,T)ui(r)g(logu(r))dr | d
+/¢(a)(/¢(a)< Jus (r)g(log u(r) ) s

(1) s T
h(s,7,0)ul(c)g(logu(c))de | dr | d
+/4>(a) (/¢(a) ( é(a) ( Jut(@)gllog (=) ) ) S}

fort € I, where p>gq >0 and a > 1 are a constant. Then, if p=gq

(2.12)

o(t)

u(t) < 7r1/”(t) exp {})G_l [G(Bl ) +/ b(s)ds

¢(a)
() s
(2.13) +/ / k(s,7)dr | ds
#(a) \J¢(e)
(1) s T
+/ / h(s,7,0)do | dr | ds
() é(a) \/o(a)

for t € [a,Ts), where

(t)

B (t) = loga+/¢( ) b(s)g(log w1/P(s))ds

o) [ ps ‘
(2.14) + /d)(a) </¢(a) k(s,m)g(log 71-1/P(7-))d7') ds

o(t) s T
+/ </ (/ h(s, T, a)g(logw””(o))da) dT) ds
#(e) \Yo(a) \Vo(a)

fort € o, T5); if p > q,

u(t) < 7HP(t) ex

ko)

p—q é(a)

(2.15) —I—/;:Z) </¢:a) k(s,v‘)dr) ds
Lo (L (o) r) o]

for t € [a,Ts|, where Ts5,Ts € I are chosen so that the quantity in the square
brackets of (2.13) and (2.15) are in the range of G respectively, G and G~ are
as in Lemma 2.1.

{_1_G-1 [G(B1 ) + / * b(s)ds
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Proof. Define a function v3(t) by
&(t)

o(t) s
v3(t) = a s)g(logu(s))ds 8, T u(7))dr | ds
(t) = a+ L ., Ho)slogu(s)ds + /¢ . ( /¢ ., Mo, lgtlogu(r) )d

o(t) s T
his,7,0)g(1 o))do | dr ) ds.
+/¢(a) (/M(/ﬁs(a) (s,7,0)g(log u(0)) a) ) s

Then wv3(t) is nondecreasing for t € I, v3(a) = a and
(2.16) u(t) < 7P (e’ (1)
for t € I. Differentiating v3(2), we get

v3(t) = b(e(t))u?(e(t))g(log u(é(t)))¢' (t)

#(t)
. ( / k<¢<t>,r)u%)g(logu(r))dT) 40
é(e)

#(t) T
+ (/¢(a) (/{ﬁ(a) h{o(t), T, a)uq(a)g(logu(a))da> dT) (1)

< b(B(0)) TP ()03 (9(2)) g (log [ /P (6(2))v i P ($(1)))) &' (£)

é(t)
+ ( / k(as(t),r)w”"<T>v§/”(r)g(log[wl/%)v;”<T>]>dr) 40
¢(a)

é(t) T
+ (/ (/ h((b(t),T,a)ﬂl/”(a)vg/”(a)g(log[wl/”(a)vg/p(a)])da> d7'> (f)’(t)
é(a) #(a)

< o7 (1) [b(¢(t))7rl“”(¢(t))g(log[ﬂl/”(¢(t))v§/p(¢(t))])¢' (t)

¢(t)
+ ( / k<¢<t>,TW’<T>g<1og[7r1“°(T>v§/”<r>1)dr) 0
¢(a)

#(t) ™
+ ( / < / h{o(2), T, 0)771/”(U)g(]og[vrl/”(a)vg/p(a)])da> dr) ¢’(t)} .
¢(a) é(a)

It follows that
(2.17)
v3(t)

gy < PO T GO) 9ol TG0 (GO (1)
V3

()

() T
! </ (/ h(g(t), T, a)w(o)gaogw/p<a)v§“’<o>1)d0> dT) ' (t).
() #(a)

s(t)
+ </¢ k(¢(t),T)Wl/”(T)g(log[ﬂl/p(T)vg/P(T)])d'f> ¢'(t)
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If p = g, setting ¢ = s in (2.17) and then integrating from « to ¢, ¢ € I, changing
the variables and using the subadditivity of function g we get

#(t)

Mme&w+A)WMMw®W

o) [ s
+ /q},(a) (/¢(a) k(s,7)g(logvs (T))dr> s

() s T
+/ (/ ( h(s,, a)g(logvg(a))da) d7'> ds,
o(a) \Yo(e) \Jo()

where B (t) is defined by (2.14) and obviously Bj(¢) is nondecreasing contin-
uous on I. By Lemma 2.1 and Remark 2.1 we get

(2.18)
#(t) #(t) s
G(B: S k(s,7)dr | d
(B (t))+/¢(a) ) +/¢>(a) (/aﬁ(a) (&7 T> ’

v3(t) < exp {G_l
(1) s T
+/ / h(s,7,0)do | dr | ds
é(a) #(a) \/ ()

for t € [a, T5].
If p > g, setting t = s in (2.17) and then integrating from « to ¢,t € I,
changing the variables and using the multiplicity of function g we get

) < B . 4 yo(logv.® (s))d
1@()_1m+ﬂm (©a(Egllog g™ (s))ds

o) [ fs ra
+/¢ </¢ k(s,r)g(—qg)g(logvs" (T))dT) ds

(e) () b—

¢(t) s T q P—q
+/ / / h(s,7,0)g(——)g(logvs® (o))do | dr ] ds,
é(x) \Je(a) \Jo(e) pP—q

where B (t) is defined by (2.14). By Lemma 2.1 and Remark 2.1 we get
#(t)

(1) s
G(B1(t)) + /¢(a) b(s)ds +/¢(a) (/¢(a) k(s,7)d7> ds

o(t) s T
+/ / h(s,7,0)do | dr | ds
é(a) é(a) \Vo(x)

6(t)

ot) [ po
G(B: (1)) + /¢ b /¢ . ( /¢ . k(s,*r)dr) ds

r—aq
vy” (t) < exp {G_l

or

vs(t) < exp {—p—G—1
b—q
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Lo (L (L perow) ) o]

for t € [a,Ts]. Now, by using (2.18) and the last inequality in (2.16), we
get the desired inequalities (2.13) and (2.15), respectively. This completes the
proof. O

3. Some more generalized inequalities

In this section, we give some more generalizations of the results obtained in
section 2. Let a < f and set J; = {(¢1,42,...,8;) ER :a<t; <--- <11 < 5}
fori=1,...,n.

Theorem 3.1. Let a,u(t), ¢(t) and g be as in Lemma 2.1, ¢ be as in Theorem
2.2. Suppose that

(3.1)
o(u(t))
#()
< a+/( ) E1(t ) (u(ty))g(u(ty))dty + - - -
(e
40 t s
#(a) () é(@)
for t € I, where k;(t,t1,...,t;) are nonnegative, continuous functions in J; 1

aakt" (t,t1,...,t;) exist and are nonnegative, continuous
in Jirg fori=1,2,...,n. Then

#(t) t

(3.2) u(t) < G™1 {G((p_l(a)) + R{1){r,T)dr +/

#(a) o

for t € [a,Tr], where T; is chosen so that the quality in the braces of (3.2) in
the range of G,
(3.3)

) o)
Rlz](¢, ) = ky(t, Da(t) + A . ko (t, 8, t2) 2 (t2)dts

n ®(t) ta ti_1 .
+Z/ / / kit b ta, . t)z(t)dt; | -+ | dta,
o o) \Jo(a) $(a)

@
Qe = [t

B U ([ o))

for any x(t) € C(I,I) and t,t € I,G and G~ are defined as in Lemma 2.1.

Q1] (T)dT}
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Proof. Define a function v(¢) by the right side of (3.1). Then v(¢) is nonde-
creasing continuous, u(t) < ¢~ 1(v(t)) for t € I and v(«) = a. Taking derivative
to v(t), we have

V(1) = Rl (W)gw)(t, 6(0)¢' (1) + QL' (wg(w))(t)
< {Rlgle™ ()]t 6(1)¢' (1) + Qlo(e™ @@ }' (07 (v®)),

or
v'(t) -1 ! -1
————— < R[g v)[(t, d(1)d' (¢) + Qg(v™ (v)](1).
St S e W60 0 + Qlate™ WO
As the procedures in the proof of Theorem 2.2, setting ¢ = s in the last in-
equality and then integrating from « to t,t € I, changing the variables to the
right-hand side first integral we get
#(t) t
(3:4) ¢ (v(®) < ™M (a)+ @ Rlg(¢™  (w)](r, T)dT+/ Qlg(p™ ()](r)dr.
¢(a o
Now, we denote the right-hand side of (3.4) by #(t). Then #(a) = ¢~ (a),
¢~ (v(t)) < ¥(t), the function ©(t) is nondecreasing in t € [, 5] and

7'() < { RO 6(0)¢' ) + QMUIE) }o(a(2)).

Integrating the last inequality from « to ¢,t € I and changing the variables to
the first integral we get
é(t) t
G(o(t) < Go(@) + [ Rl nar+ [ Quirydr
#(a) o
or

é(t)
(35 o) <G’ {G(w“l(a)) +

é(a)

for t € [a,T], where T is chosen so that the quality in the braces of (3.5) in
the range of G. Now the desired inequality (3.2) follows by the inequalities
u(t) < ¢~ 1(v(t)) < ¥(t) and (3.5). This completes the proof. a

R[l](T,T)dT+/ Q[l](T)dT}

Let ¢(u) = u? in Theorem 3.1, we get the following Ou-Iang type retarded
integral inequality with iterated integrals immediately.

Corollary 3.2. Let a,u,g,¢ and k;(i = 1,2,...,n) be as in Theorem 3.1,
p > 1 is a constant. Suppose that
(3.6)

u?(t)

3(t)
S a -+ / k‘l (t, tl)upal(tl)g(u(tl))dtl + -

¢(a)

#(¢) t1 t_s
+/ </ (/ kn(t,tl,..,,tn)up—l(tn)g(u(tn))dtn> ) dt
() o(a) #(a)
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fort € I. Then

1 @(t)

(3.7) mwgaﬂ{amm§+—/

P Jy(a)

1 t
RMhﬂM+5AQmmm}

for t € [a,Tg], where Ty is chosen so that the quality in the braces of (3.7) in
the range of G,R,Q,G and G are defined as in Theorem 3.1.

As similar argument as in Corollary 2.4, we can get the following interesting
result from Theorem 3.1:

Corollary 3.3. Let g,¢ and k;(i = 1,2,...,n) be as in Theorem 3.1, a >
1,p > 0 be constants and u € C(I, R1). Suppose that
(3.8)

u?(t)

é(t)
<a +/ ki(t, t)uP(t1)g(log u(éy))dty + -
$(a)

é(t) t1 tn1
+ / (/ . (/ kn(t 11, ,tn)uP(tn)g(logu(tn))dtn> y ) dt,
(o) o) #(a)

fort € I. Then
(3.9)

MUSwp&fl%%Wﬂ+1/wqmmﬂﬂﬁ+%/%ﬁmﬂﬁ}>

P Jo(a)

for t € la, Ty, where Ty is chosen so that the quality in the braces of (3.9) in
the range of G, R,Q,G and G~ are defined as in Theorem 3.1.

Remark 3.1. Let p = 1,6(¢) = t and g(u) = w in Corollary 3.3, we can get a
similar result as Theorem 3.1 in [6].

Theorem 3.4. Letu and ¢ be as in Lemma 2.1, a € C* Y (R4, Ry), p1,- -+ Pn,
fis.-., fn be nonnegative, continuous functions in I. Let g(u) be a continuously
differentiable function defined on Ry, g(u) > 0 on (0,00),¢'(u) > 0 foru € Ry
and ¢ € C*(R4, Ry) with ¢'(u) > 0 for u > 0. Suppose that
(3.10)

e(u(t))

@(t)

suw+/ p1(8) 1 ()¢ (u(s))g (u(s))ds
o)

@(t)

+ pl(tl)/ 1 p2(8) f2(8)¢ (u(s)) g(u(s))dsdt, + - --
o(c) ¢{o)

o(t) ty tn 1
+/ pi(ty) (/ pa(te) - - </ pn(S)fn(S)sO’(U(S))g(U(S))dS--~) dtz) dt
o(a) () o)
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forteI. Then

(3.11) u(®) < GH{Glp™ (a(t)] + F(1)}
for t € [a, T1o], where

(3.12)

() &(t) ty
Hﬂ{&wm@h®%+éwpﬁﬂémm@h@@%+~-

#(t) t to1
+/¢(a) pi(t1) (L(a) pa(te) - (/{M pn(s)fn(s)ds...> dt2) dty,

Tio is chosen so that the quality in the braces of (3.11) in the range of G, G
and G~ are same as in Lemma 2.1.

Proof. Define a function v(t) by the right side of (3.10). Then v(¢) is non-
decreasing continuous, u(t) < ¢~ '(v(t)) for t € I and v(a) = a(t). Then
differentiating v(¢) and rewriting we have

V() —d(t) _ o) =
where
V1 (t)

$(t)
= L P2(5) £2(5) (u(s))g (u(s))ds + - -

(o)

() 2] th_1
+ /¢(a) p2(ta) (/¢(a)p3(t3) e (/¢>(a) pn(s)fn(f)ga (u(8))g(u(s))ds- ) dta) dts.

From the definition of v (t) we get

we o) —
(3.14) TOm@) f2(8(1)¢" (w)g(w) = va(2),
where

Uz(t)

$(t)
=/¢( ) p3(s)f?»(3)‘p,(u(s))g(u(s))ds_|_ .

(#) t3 tn—1
+ /q:a) ps(ts) (L(Q)P4(t4) e (/ﬂa) Pn(s)fn(s)sal(U(S))Q(U(S))ds'") dt4) dts.

Continuing in this way, we obtain

Vn_s(t) , _
(3.15) FOPa (D) Fr—1(8(t))¢' (w)g(u) = va_1(t),
where

@(t)
vmdﬂzﬁupdﬂh@dw@MW@M&
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from the definition of v,_1(¢) and using u(t) < ¢~ (v(t)) we can get

!

m < ¢'(O)pn(6(t)) fn (B(t))g (™" (v(8(1)))-

Integrating the last inequality and changing the variable to the right-hand side
integral we have

t o (1)
S S—; n(8) Frnls “L(u(s .
819 [ Semy® s [, pOREE e

By integrating by parts to the left-hand side of (3.16) we obtain

517 P

From (3.16) and (3.17) we have

e o(t) (e
819 ey < L, PORE woNd

Now by (3.15) and (3.18) we observe that

/t V,,_2(8) ds
« P H(v(s)))
U;z—l(t) !
< mpn—lw(t))ﬁb (t)
+ Pr—1(8(1) fa-1(8(1)g( ™ (v(6(1))))¢' (t).-

Using the same procedures from (3.16) to (3.17) to the last inequality we have
et < [ @) sl )
< Pr-1(8) fr_1(8)glp™" (v(s)))ds
T w®) = o I

$(1) t1
n—1\t1 n{S)JnlS —I,US ddl
+/¢(a)p (t)L(a)p()f()g(w (v(s)))dsdt
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Proceeding in this way we can get

(319)

@' (e~ (v(t)))

#(t)
< [ m)h@ee w6+
#(a)

o(t) to tn_1
+/ pa2(t2) </ p3(ts) - - (/ pn(S)fn(S)g(w‘l(v(S)))ds-") dts) dts.
() () ()

From (3.19), (3.13) and using u(t) < ¢~ (v(t)), we observe that

PP 1) ¢l (a( ))

3.2 ? - y
(3.20) 580'(30“1(1)( 1) ¢ (e~ (v(t))

= p1(6()) 1(6(2))¢ (W) g(w)¢' (t) + mpmﬁ(t)w(t)

Integrating (3.20) from « to ¢, and then using (2.7) to the left-hand side inte-
grals and using (3.19) to the right-hand side integrals and changing variables
we can get

(3.21)

e v(t) - ¢ (a(t)

¢(t)
< / p1(5) 1 (8)g (0 (v(s)))ds
#(e)

#(t) t
+/¢(a) pl(tl)A(a) P2(8) f2(8) (0~ (v(s)))dsdty + ---

(t) 121 tn—1
+/ p1(t1) (/ pa(ta) - - (/ pn(S)fn(S)y(wl(v(S)))dS'“) dtz) dt;.
() o(a) ¢(o)

Denoting z(t) = ¢~ (v(t)) and I(t) = ¢! (a(t)), from (3.21) we have
(3.22)

@(t)
2(t) < 1(6) + / PR

#(¢)
- /¢(a) (1) / p2(8) f2(s)g(2(s))dsdty + - - -

#(t) tn—1 ‘
+ / / pa(ta) - / Pn(8) fn(8)g(z(s))ds - | diz | dt;.
¢(0‘) () o)
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Now, let V(t) be the right-hand side of (3.22), then z(t) < V(t), using same
steps as used from (3.13) to (3.20) we can get

(3.23) o
i ¢
sy < [ pends -
0 t2 -
’ /¢<a> palta) (/M) pslts) - (/M) Pn(8) fn(s)ds > dt3> dts.
and
Vv’ B I
g(V(t)) gU@®)
(3.24) s V0
—gV(@®) 9(V(H)
, Vi ,
= (o) f1(6(1)) @' (t) + mmw(i)ﬁb ®),
where
(3.25) Vi(t) V() = I'(¢) A0,

IOC0)

Integrating (3.24) from « to t, using the definition of G and z(t) < V(t) we
obtain

G(V(t) - G(1))

(t) #(t) ty
< / pl(s)fl(s)ds+/ pl(tl)/ po(3) fo(s)dsdts + - - -
#(e) () ()

#(t) t .
+/¢(a) pi(t1) </¢(a) p2(t2) - </¢(a) pn(s)fn(s)ds...> dt2) dt,

or
(3.26)
V()

#( b(1) h
<G! {G(l(t)) +/ : pi(s) fr(s)ds +/¢(a) pl(tl)/ po(8) fo(s)dsdty + -

(e (@)

8(t) ty -
+/¢(a) p1(t1) (/(1)(0‘)172(752) <A(a) pn(s)fn(s)ds...) dt2> dtl}

for t € [e, Tho), Tho is chosen so that the quality in the braces of (3.26) in the
range of G. Now from u(t) < =1 (v(t)) = 2(t) < V(¢) and (3.26) we can get
the desired inequality (3.11). This completed the proof. a

Remark 3.2. (1) When ¢(u) = u, ¢(t) = ¢ in Theorem 3.4, we can get Theorem
1 which was given by Medved [18]; (ii) When ¢(u) = u, a slightly different
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version of Theorem 3.4 was also given in [18]; (ili) When f; = fo = --- =
fa—2 =0, ¢(t) = t, form Theorem 3.4 we can get Theorem 2.1 given in [14].

By a similar argument as in the proof of Corollary 2.4, we have an interesting
result as follows:

Corollary 3.5. Let ¢,p;, and fi(i = 1,2,...,n) be as in Theorem 3.4, u €
C(Ri,Ry), a € CY(Ry,Ry) and p > 0 be a constant. Suppose that
(3.27)
u?(t)
o(t)

< aft) + /¢ , PIORE glloguls)ds

#(t) t
" /¢(a) pi(h) /d’(a) D2(5) f2(s)uP(s)g(log u(s))dsdty + - --

B(t) [ rt1 ta_1
+ / pi(t1) k / pa(ta)--- / Du(8) fu(s)uP (s)g(logu(s))ds -+ | dits | dt1
#(o) #(a) #(a)

fort €I, then

(3.28) u(t) < exp (G—l {G[% log a(t))] + F,,(t)}) ,

for t € [a, T1o], where T1o is chosen so that the quality in the braces of (3.28)
in the range of G, G and G~ are same as in Lemma 2.1, Fp(t) = %F(t),F(t)
is defined as in (3.12).

Let p =1, g(u) = u in Corollary 3.5 we have

Corollary 3.6. Let u,a,¢,p;, and fi(i = 1,2,...,n) be as in Corollary 3.5.
Suppose that
(3.29)

u(t)

#(t)

< a(t) + /¢ ., POE)u(s) logu(s)ds

#(t) t1
+/ p1(ty) p2(8) fo(s)u(s)) logu(s)dsdts + - -
é(a) é(c)

#(t) t1 tn-1
+/ p1(t1) (/ pa(ta) - - (/ Pu(8) fu(s)u(s) IOgU(S)dS"') dt2) diy
#(a) #(a) @(a)

fort € I. Then
(3.30) u(t) < (a(t)PE®)
for t € I, where F(t) is defined in (3.12).
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Remark 3.3. When a(t) = a (a is a constant) f; = 1(i = 1,2,...,n) and
#(t) = t in Corollary 3.6, [6] established a explicit bound of the solutions of
(3.29), which is not only different to the bound given in (3.30) but also is valid
only on a subset of I.

4. Applications

(A) Consider the following retarded integro-differential equation

(4.1) (h(t)z") = F (t,x(t - T(t)),/ G(o,z(0 — T(O’)))d(f)

for t € I, where h is positive continuous on I, 7 € C*(I, I) is nonincreasing with
t—7(t) >0,7(a) =0,t —7(t) € C'(I,I),7(t) < ,Fe CIXxRx R,R),G €
C(I x R,R).

Theorem 4.1. Assume that the conditions

(4.2) [E'(t,u, 0)] < bi(8)|ulg(log [ul) + ba(8)]v],

(4.3) |G(s,v)| < bs(s)|v]g(log Jv]),

are satisfied, where b;(t) € C(I,Ry)(i = 1,2,3) and function g is defined in
Lemma 2.1. If z(t) is any solution of (4.1), then
(4.4)

t—7(t)
|z(8)] < exp (G_l [G(loga) +/ MH(t,n+7(s)b1(n+ 7(s))dn

[e4

t—7(t) pn
[ M2H(t,n+T(5))bz(n+T(8))53(C+T(£))dcan—1

1
for t,s,& € (o, TY), where M = max W,Tf € I is chosen so that the

quantity in the square brackets of (4.4) is in the range of G, G and G~! are as
in Lemma 2.1.

Proof. Let z(t) be any solution of (4.1) which is passing through the initial
point (z(a), &' («)). Integrating the both side of (4.1) two times and using the
well-known Dirichlet formula we obtain

z(t) = z(a) + h(a)z' (0)H(t, a)

(45 + [ Ho)F [ssats = 760, [ Glo.ato  rioio] .
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t
where H(t,s) =/ ﬁdu,t > s> a. Applying (4.2) and (4.3) to (4.5) and

making the change of variables we obtain
(4.6)
()]

< 1)+ [ H(t,s)bn(9)]als — 7()lgllog o(s — 7(9))lds
[ CH(t, $)ba(s)bs (©)]a(€ — 7(8))\g(log |2(€ — 7(£))|déds
t—7(t)
<I(t)+ / MEH(t, 0 +7(5))by (1 + 7(s)le(n)lglog | (m)ldn

t—7(t) pn
+/ M2H(t,n + 7(5))ba(n + 7(5))bs (¢ + 7(£))|2(¢)|g(log |« () d¢dn

=4 22

for t € I, where I(t) = 1+ |z(a)| + h(a)H(t,a)|z'(a)]. Obviously, function
H(t,s) is nondecreasing in variable ¢ for every s fixed. Fix T € [, T}], then
for a <t < T, from (4.6) we have

|z(t)] + 1

t—7(t)
<IH+ / MH(T,n+ 7(s))bi(n + 7(s))(|z(m)] + 1)g(log(jz(n)| + 1))dn
t—7(t) pm
+ / / M2H(T,n+7(s))ba2 (11 + 7(8))b3(¢ + 7(€)) (|2(O)] + Dg(log(|z({)f + 1))d¢dn.

Ifi(t) < a (ais a constant), an application of Corollary 2.4 to the last inequality
yields

t—7(t)
lz(t)] < exp (G‘1 [G(log a) + / MH(T,n+ 7(s))b1(n +7(s))dn
——
+/ / M?H(T,n+7(s))b2(n + 7(5))b3(¢ + T(é))dCdn] ) -1
for t € [@,T]. Setting t = T in the last inequality we get
(4.7)

T—7(T)
|z(T)| < exp <G‘l [G(log a) + / MH(T,n+ 7(3))b1(n + 7(s))dn

T—7(T) pn
+/ / M2H(T,n+7(s))b2(n +T(8))bs(C+T(€))dCan -1
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Since T is arbitrary, from (4.7) with T replaced by ¢ we have

t—7(t)

|2(t)] < exp <G_1 [G(loga) +/ MH(t,n+7(s))b1(n + 7(s))dn

t—7(t) n
[ A HC+ )t + 76D+ T(f))dcdn] ) -1,
which is the desired inequality (4.4). O

(B) Consider the retarded differential equation

(4.8) D,z(t) = F(t,z(t — 7(t))), t€ I,
(4.9 Dix(a) =C;_1,i=1,2,...,n,
where
Do(t) = alt), Dialt) = — Z(Da (), 1<i<n,
with pa(t) = 1,p:(t) > 0(i = 1,2,...,n — 1) are some continuous functions

defined on I; Cy_.1,1 < i < n are constants; function 7 is defined as in Theorem
4.1. For convenience, for ¢t € I and some continuous functions ¢;(t) > 0,j =
1,2,...,n—1 and q > 0 defined on I, we define

(4.10)

1 t1 tn—1
N[t,ql,qz,...,qn~1] :/ 111(151)/ QQ(tg)-"/ q(tn)dtndtn_l'”dtl,

[e3

where tg = ¢.
Theorem 4.2. Assume that the condition
(4.11) |F(t,u)] < f(t)|ulg(log |ul)

is satisfied, where f(t) € C(I,Ry),F € C(I x R,R) and function g is defined
in Lemma 2.1. If 2(t) is any solution of (4.1), then

(4.12) [2(8)] < exp (G {Gllog(1 + b(t)))] + N(O)}) -1,

fort,ti, ..., th—1 € [a, T5], where

t—‘r(t) s1

q1(s1 +7(t1)) / q2(s2 +7(t2)) -~

@ 24

N(t) = M"—l/

Sn—2 Sp—1
X / Gn-1{8n—1 + 7(tn-1)) / (80 + 7(tn))dsndsn—1 -~ ds,

Ty is chosen so thal the quality in the braces of (4.12) in the range of G, G
and G~! are same as in Lemma 2.1.



352 QING-HUA MA AND JOSIP PECARIC

Proof. Let z(t) be any solution of (4.8) with initial value (4.9). Then it is easy
to observe that z(t) satisfies

(413) ‘T(t) = b(t) + N[tap17p2a .. 5pn-—1’F(t:$(t - T(t)))]a te I:
n-—1

where b(t) = Cp + ZCiN[t,pl, ...,pi]. Using the condition (4.11) to (4.13)
=1

and changing the variables to N[t,p1,Ds,...,Pn-1, F (¢, 2{t — 7(t)))] we can get

lz(t)| + 1
<14 {b(t)| + N[t p1,p2,-.-, | FE, 2 — 7))
L+ [b(&)| + Nlt,p1, 2, - -, f) (2t — ()] + Dg(log|2(t — 7(£))] + 1))]
1+ [b(t)] + N[t — 7(8), P1, P2, - -» Pn1, f - (|| + 1)g(log(|z] + 1))],
where

N[t = 7(),p1,P2,- - -, Fn1, f - (|| + 1)g(log(|z| + 1))]

t—7(t) 51 Sn=2
= M"‘1/ q1(s1 +T(t1))/ g2(s2 +T(t2))"'/ Gn-1(8n—1 + 7(tn1))

IA A

* /sn_1 flsn +7(tn))(|2(sn)| + Dg(log(|z(sn)| + 1))dsndsn—1 - - ds;.

An application of Corollary 3.5 to the last inequality yields the desired inequal-
ity (4.12). 0

Obviously, under our assumptions to equations (4.1) and (4.8)-(4.9), a suffi-
cient condition for boundedness of all solutions defined on suitable intervals is
that the integrals in (4.4) and (4.12) are boundedness.
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