DOI QR코드

DOI QR Code

Lq(Lp) -THEORY OF PARABOLIC PDEs WITH VARIABLE COEFFICIENTS

  • Published : 2008.02.29

Abstract

Second-order parabolic equations with variable coefficients are considered on $\mathbb{R}^d$ and $C^1$ domains. Existence and uniqueness results are given in $L_q(L_p)$-spaces, where it is allowed for the powers of summability with respect to space and time variables to be different.

Keywords

References

  1. A. Benedek, A. P. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365 https://doi.org/10.1073/pnas.48.3.356
  2. K. Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal. 36 (2004), no. 2, 618-642 https://doi.org/10.1137/S0036141003421145
  3. N. V. Krylov, Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces, J. Funct. Anal. 183 (2001), no. 1, 1-41 https://doi.org/10.1006/jfan.2000.3728
  4. N. V. Krylov, The heat equation in $L_q((0,T),L_p)$-spaces with weights, SIAM J. Math. Anal. 32 (2001), no. 5, 1117-1141 https://doi.org/10.1137/S0036141000372039
  5. N. V. Krylov, An Analytic Approach to SPDEs, Stochastic partial differential equations: six perspectives, 185-242, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999
  6. N. V. Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations 24 (1999), no. 9-10, 1611-1653 https://doi.org/10.1080/03605309908821478
  7. N. V. Krylov, Some properties of weighted Sobolev spaces in $R^d_+$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 675-693
  8. S. V. Lototksy, Dirichlet problem for stochastic parabolic equations in smooth domains, Stochastics and Stochastics Rep. 68 (1999), no. 1-2, 145-175 https://doi.org/10.1080/17442509908834221
  9. S. V. Lototksy, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods Appl. Anal. 7 (2000), no. 1, 195-204
  10. P. Weidemaier, On the sharp initial trace of functions with derivatives in $L_q(0,T;L_p(\Omega))$, Boll. Un. Mat. Ital. B (7) 9 (1995), no. 2, 321-338

Cited by

  1. Finite Difference Schemes for Stochastic Partial Differential Equations in Sobolev Spaces vol.72, pp.1, 2015, https://doi.org/10.1007/s00245-014-9272-2
  2. On the solvability of degenerate stochastic partial differential equations in Sobolev spaces vol.3, pp.1, 2015, https://doi.org/10.1007/s40072-014-0042-6
  3. Stochastic regularization effects of semi-martingales on random functions vol.106, pp.6, 2016, https://doi.org/10.1016/j.matpur.2016.04.004