References
- R. P. Agarwal and D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), no. 2, 402-414 https://doi.org/10.1006/jmaa.2000.6914
- R. P. Agarwal, J. H. Dshalalow, and D. O'Regan, Fixed point and homotopy results for generalized contractive maps of Reich type, Appl. Anal. 82 (2003), no. 4, 329-350 https://doi.org/10.1080/0003681031000098470
- L. B. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(24) (1972), 265-272
- H. Covitz and S. B. Jr. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11 https://doi.org/10.1007/BF02771543
- M. Frigon and A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 197-208 https://doi.org/10.12775/TMNA.1994.026
- A. Petrusel, Generalized multivalued contractions, Nonlinear Anal. 47 (2001), no. 1, 649-659 https://doi.org/10.1016/S0362-546X(01)00209-7
- A. Petrusel and I. A. Rus, Well-posedness of the fixed point problem for multivalued operators, Applied analysis and differential equations, 295-306, World Sci. Publ., Hackensack, NJ, 2007
- A. Petrusel and I. A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), no. 1, 97-104
- A. Petrusel, I. A. Rus, and J.-C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math. 11 (2007), no. 3, 903-914 https://doi.org/10.11650/twjm/1500404764
- S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26-42
- I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
- I. A. Rus, A. Petrusel, and G. Petrusel, Fixed Point Theory: 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002
- I. A. Rus, A. Petrusel, and A. Sintamarian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947-1959 https://doi.org/10.1016/S0362-546X(02)00288-2
Cited by
- Fixed point theory for multivalued φ-contractions vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-50
- Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces vol.72, pp.3-4, 2010, https://doi.org/10.1016/j.na.2009.10.001