DOI QR코드

DOI QR Code

FIXED POINTS AND HOMOTOPY RESULTS FOR ĆIRIĆ-TYPE MULTIVALUED OPERATORS ON A SET WITH TWO METRICS

  • Lazar, Tania (COMMERCIAL ACADEMY SATU-MARE) ;
  • O'Regan, Donal (DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF IRELAND) ;
  • Petrusel, Adrian (DEPARTMENT OF APPLIED MATHEMATICS BABES-BOLYAI UNIVERSITY CLUJ-NAPOCA)
  • Published : 2008.02.29

Abstract

The purpose of this paper is to present some fixed point results for nonself multivalued operators on a set with two metrics. In addition, a homotopy result for multivalued operators on a set with two metrics is given. The data dependence and the well-posedness of the fixed point problem are also discussed.

Keywords

References

  1. R. P. Agarwal and D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), no. 2, 402-414 https://doi.org/10.1006/jmaa.2000.6914
  2. R. P. Agarwal, J. H. Dshalalow, and D. O'Regan, Fixed point and homotopy results for generalized contractive maps of Reich type, Appl. Anal. 82 (2003), no. 4, 329-350 https://doi.org/10.1080/0003681031000098470
  3. L. B. Ciric, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(24) (1972), 265-272
  4. H. Covitz and S. B. Jr. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11 https://doi.org/10.1007/BF02771543
  5. M. Frigon and A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 197-208 https://doi.org/10.12775/TMNA.1994.026
  6. A. Petrusel, Generalized multivalued contractions, Nonlinear Anal. 47 (2001), no. 1, 649-659 https://doi.org/10.1016/S0362-546X(01)00209-7
  7. A. Petrusel and I. A. Rus, Well-posedness of the fixed point problem for multivalued operators, Applied analysis and differential equations, 295-306, World Sci. Publ., Hackensack, NJ, 2007
  8. A. Petrusel and I. A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), no. 1, 97-104
  9. A. Petrusel, I. A. Rus, and J.-C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math. 11 (2007), no. 3, 903-914 https://doi.org/10.11650/twjm/1500404764
  10. S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26-42
  11. I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
  12. I. A. Rus, A. Petrusel, and G. Petrusel, Fixed Point Theory: 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002
  13. I. A. Rus, A. Petrusel, and A. Sintamarian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947-1959 https://doi.org/10.1016/S0362-546X(02)00288-2

Cited by

  1. Fixed point theory for multivalued φ-contractions vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-50
  2. Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces vol.72, pp.3-4, 2010, https://doi.org/10.1016/j.na.2009.10.001