BINDING NUMBER CONDITIONS FOR (a, b, k)-CRITICAL GRAPHS

SIZHONG ZHOU

ABSTRACT. Let G be a graph, and let a,b,k be integers with $0 \le a \le b, k \ge 0$. Then graph G is called an (a,b,k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a,b]-factor. In this paper, the relationship between binding number $\operatorname{bind}(G)$ and (a,b,k)-critical graph is discussed, and a binding number condition for a graph to be (a,b,k)-critical is given.

1. Introduction

In this paper, we consider finite and undirected simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). For $x \in V(G)$, the degree of x in G is denoted by $d_G(x)$, the minimum vertex degree of V(G) is denoted by $\delta(G)$. For any $S \subseteq V(G)$, we denote by $N_G(S)$ the neighborhood set of S in G, by G[S] the subgraph of G induced by S, by G-S the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if G[S] has no edges. Let S and S be disjoint subsets of S. We denote by S denote by S and S the number of edges joining S and S. We write S in S defined by Woodall [6] as

$$\operatorname{bind}(G) = \min \left\{ \frac{|N_G(X)|}{|X|} : \emptyset \neq X \subseteq V(G), N_G(X) \neq V(G) \right\}.$$

Let a and b be integers with $0 \le a \le b$. An [a,b]-factor of graph G is defined as a spanning subgraph F of G such that $a \le d_F(x) \le b$ for each $x \in V(F)$. And if a = b = k, then an [a,b]-factor is called an k-factor. A graph G is called an (a,b,k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a,b]-factor. If G is an (a,b,k)-critical graph, then we also say that G is (a,b,k)-critical. If a = b = n, then an (a,b,k)-critical graph is simply called an (n,k)-critical graph. If n = 1, then a (n,k)-critical graph is simply

Received February 19, 2007; Revised September 6, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 05C70.

Key words and phrases. graph, [a, b]-factor, binding number, (a, b, k)-critical graph.

This research was supported by Jiangsu Provincial Educational Department (07 KJD -110048).

called a k-critical graph. The other terminologies and notations not given in this paper can be found in [1].

Yu [7] gave the characterization of k-critical graphs. Cai et al [2, 5] studied the relationship between toughness t(G) and (n,k)-critical graphs (n=2,3). Enomoto et al [3] showed the relationship between toughness t(G) and (n,k)-critical graphs. Liu et al [4] gave a necessary and sufficient condition for a graph to be (a,b,k)-critical. Zhou [8] gave two sufficient conditions for graphs to be (a,b,k)-critical. In this paper, we give a binding number condition for a graph to be (a,b,k)-critical.

Liu et al [4] obtained a necessary and sufficient condition for a graph to be (a, b, k)-critical, where $1 \le a < b$ and $k \ge 0$ are integers.

Lemma 1.1 ([4]). Let G be a graph with $|V(G)| \ge a + k + 1$. Then G is (a, b, k)-critical if and only if for any $S \subseteq V(G)$ and $|S| \ge k$

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \le b|S| - bk,$$

where $p_j(G-S) = |\{x : d_{G-S}(x) = j\}|.$

2. The proof of main results

Theorem 1. Let G be a graph, and let 2 < b and $k \ge 0$ be integers, $\delta(G) \ge k + 2$. If $\operatorname{bind}(G) \ge \frac{(k+3)b+4}{3b}$, then graph G is (2, b, k)-critical.

Proof. Suppose that $bind(G) \ge \frac{(k+3)b+4}{3b}$ and G is not (2,b,k)-critical. By Lemma 1.1, there exists $S_0 \subseteq V(G)$ and $|S_0| \ge k$ such that

(1)
$$2p_0(G-S_0) + p_1(G-S_0) > b|S_0| - bk.$$

Let

$$T_0 = \{x : x \in V(G) \setminus S_0, d_{G-S_0}(x) = 0\},\$$

and

$$T_1 = \{x : x \in V(G) \setminus S_0, d_{G-S_0}(x) = 1\}.$$

We have $|T_0| = p_0(G - S_0) = i(G - S_0)$ and $|T_1| = p_1(G - S_0)$. The proof splits into three cases.

Case 1. $T_1 = \emptyset$.

By (1), we have

$$bk \leq b|S_0| < 2p_0(G - S_0) + bk$$
.

So

$$p_0(G-S_0)>0.$$

Subcase 1.1. $1 \le p_0(G - S_0) \le 2$. Since $\delta(G) \ge k + 2$, we get

$$(2) |S_0| \ge k + 2.$$

It follows from (1) and (2) that

$$4 \ge 2p_0(G - S_0) = 2p_0(G - S_0) + p_1(G - S_0)$$

> $b|S_0| - bk \ge b(k+2) - bk = 2b > 4$.

which is contradicted.

Subcase 1.2. $p_0(G - S_0) \ge 3$.

We write X for the set of isolated vertices of $G - S_0$, it is easily seen that $3 \le |X| = p_0(G - S_0)$ and $N_G(X) \le |S_0|$. Thus

$$\frac{(k+3)b+4}{3b} \le \operatorname{bind}(G) \le \frac{|N_G(X)|}{|X|} \le \frac{|S_0|}{p_0(G-S_0)}.$$

So

$$|b|S_0| \ge \frac{(k+3)b+4}{3}p_0(G-S_0) = 2p_0(G-S_0) + \frac{(k+3)b-2}{3}p_0(G-S_0)$$

$$\ge 2p_0(G-S_0) + (k+3)b-2$$

$$> 2p_0(G-S_0) + bk = 2p_0(G-S_0) + p_1(G-S_0) + bk.$$

This contradicts (1).

Case 2.
$$T_1 \neq \emptyset$$
 and $T_1 = N_{G-S_0}(T_1)$.

By the definition of T_1 , we have $|T_1| = 2r$ (r be positive-integer).

Subcase 2.1. $|T_1| = 2$. Since $\delta(G) \ge k + 2$, we get

$$|S_0| \ge k + 1.$$

Subcase 2.1.1. $p_0(G - S_0) = 0$.

By (1) and (3),

$$2 = |T_1| = p_1(G - S_0) = 2p_0(G - S_0) + p_1(G - S_0)$$

> $b|S_0| - bk \ge b(k+1) - bk = b > 2$

a contradiction.

Subcase 2.1.2.
$$p_0(G - S_0) \ge 1$$
.

Let
$$X = T_0 \cup T_1$$
, then $|N_G(X)| \le |S_0| + p_1(G - S_0)$. Thus

$$\frac{(k+3)b+4}{3b} \le \operatorname{bind}(G) \le \frac{|N_G(X)|}{|X|} \le \frac{|S_0| + p_1(G-S_0)}{p_0(G-S_0) + p_1(G-S_0)}.$$

So

$$b|S_0|$$

$$\geq \frac{(k+3)b+4}{3}p_0(G-S_0) + \frac{bk+4}{3}p_1(G-S_0)$$

$$= 2p_0(G-S_0) + p_1(G-S_0) + \frac{(k+3)b-2}{3}p_0(G-S_0) + \frac{bk+1}{3}p_1(G-S_0)$$

$$\geq 2p_0(G-S_0) + p_1(G-S_0) + \frac{(k+3)b-2}{3} + \frac{2(bk+1)}{3}$$

$$\geq 2p_0(G-S_0) + p_1(G-S_0) + bk.$$

Which contradicts (1).

Subcase 2.2. $|T_1| \ge 4$.

For any $u \in T_1$, let $X = T_0 \cup (T_1 - u)$, then $|X| = p_0(G - S_0) + p_1(G - S_0) - 1$, $|N_G(X)| \le |S_0| + p_1(G - S_0) - 1$, we have

$$\frac{(k+3)b+4}{3b} \leq \operatorname{bind}(G) \leq \frac{|N_G(X)|}{|X|} \leq \frac{|S_0| + p_1(G-S_0) - 1}{p_0(G-S_0) + p_1(G-S_0) - 1}.$$

So

$$\begin{aligned} 3b|S_0| &\geq (bk+4)p_1(G-S_0) + (bk+3b+4)p_0(G-S_0) - bk - 4 \\ &= 6p_0(G-S_0) + 3p_1(G-S_0) + (bk+3b-2)p_0(G-S_0) \\ &+ (bk+1)p_1(G-S_0) - bk - 4 \\ &\geq 6p_0(G-S_0) + 3p_1(G-S_0) + 4(bk+1) - bk - 4 \\ &= 6p_0(G-S_0) + 3p_1(G-S_0) + 3bk \end{aligned}$$

i.e.,

$$b|S_0| \ge 2p_0(G - S_0) + p_1(G - S_0) + bk.$$

This contradicts (1).

Case 3. $T_1 \neq \emptyset$ and $T_1 \neq N_{G-S_0}(T_1)$.

There exists $u \in N_{G-S_0}(T_1) \setminus T_1$, such that $d_{G-S_0}(u) \geq 2$. Let r be the edge number in $[T_1]_{G-S_0}$, we write $X = S_0 \cup (N_{G-S_0}(T_1) - T_1 - u)$. By the definition of T_1 , we can easily obtain

$$|X| \le |S_0| + p_1(G - S_0) - 2r - 1$$

and

$$i(G - X) \ge i(G - S_0) + (p_1(G - S_0) - 2r) + r$$

$$= p_0(G - S_0) + p_1(G - S_0) - r$$

$$\ge p_0(G - S_0) + \frac{1}{2}p_1(G - S_0) > 0.$$

We write Y for the set of isolated vertices of G - X, then |Y| = i(G - X) and $|N_G(Y)| \le |X| \le |S_0| + p_1(G - S_0) - 2r - 1$. Thus

$$\frac{(k+3)b+4}{3b} \le \operatorname{bind}(G) \le \frac{|N_G(Y)|}{|Y|} \le \frac{|S_0| + p_1(G - S_0) - 2r - 1}{p_0(G - S_0) + p_1(G - S_0) - r}$$
$$\le \frac{|S_0| + p_1(G - S_0) - 1}{p_0(G - S_0) + p_1(G - S_0)}.$$

So

(4)
$$3b|S_0| \ge 6p_0(G - S_0) + 3p_1(G - S_0) + (bk + 3b - 2)p_0(G - S_0) + (bk + 1)p_1(G - S_0) + 3b.$$

Since $T_1 \neq \emptyset$, then $|S_0| \geq k + 1$. By (1), we get

(5)
$$2p_0(G - S_0) + p_1(G - S_0) \ge b|S_0| - bk + 1 \ge b + 1 \ge 4.$$

Obviously, $p_1 \ge 1$ since $p_1 = |T_1|$. Then, by the integrity of p_0, p_1 and (5) we obtain

$$p_0 \ge 2$$
 if $p_1 = 1$; or $p_0 \ge 1$ if $p_1 = 2$; or $p_0 \ge 0$ if $p_1 \ge 3$.

Thus, we have

(6)
$$(bk+3b-2)p_0(G-S_0)+(bk+1)p_1(G-S_0)+3b \ge 3bk+3b+3.$$

It follows from (4) and (6) that

$$3b|S_0| \ge 6p_0(G - S_0) + 3p_1(G - S_0) + 3bk + 3b + 3$$

> 6p_0(G - S_0) + 3p_1(G - S_0) + 3bk,

that is.

$$b|S_0| > 2p_0(G - S_0) + p_1(G - S_0) + bk.$$

Which contradicts (1).

From all the cases above, we deduced the contradiction, so the hypothesis can not hold. Hence, G is (2, b, k)-critical.

References

- J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [2] M. Cai, O. Favaron, and H. Li, (2, k)-factor-critical graphs and toughness, Graphs Combin. 15 (1999), no. 2, 137–142.
- [3] H. Enomoto and M. Hagita, Toughness and the existence of k-factors. IV, Discrete Math. 216 (2000), no. 1-3, 111-120.
- [4] G. Liu and J. Wang, (a, b, k)-critical graphs, Adv. Math. (China) 27 (1998), no. 6, 536–540.
- [5] M. Shi, X. Yuan, M. Cai, and O. Favaron, (3, k)-factor-critical graphs and toughness, Graphs Combin. 15 (1999), no. 4, 463-471.
- [6] D. R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B 15 (1973), 225-255.
- [7] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993), 55-64.
- [8] S. Z. Zhou, Sufficient conditions for (a, b, k)-critical graphs, J. Jilin Univ. Sci. 43 (2005), no. 5, 607-609.

SCHOOL OF MATHEMATICS AND PHYSICS

JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY

MENGXI ROAD 2, ZHENJIANG, JIANGSU 212003, P. R. CHINA

E-mail address: zsz_cumt@163.com