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OUTER AUTOMORPHISM GROUPS OF CERTAIN
POLYGONAL PRODUCTS OF GROUPS

Goansu Kim

ABSTRACT. We show that certain polygonal products of any four groups,
amalgamating central subgroups with trivial intersections, have Property
E. Using this result, we derive that outer automorphism groups of polyg-
onal products of four polycyclic-by-finite groups, amalgamating central
subgroups with trivial intersections, are residually finite.

1. Introduction

Polygonal products of groups were introduced by A. Karrass, A. Pietrowski
and D. Solitar [6] in the study of the subgroup structure of the Picard group
PSL(2,Z]i]), which is a polygonal product of four finite groups amalgamating
cyclic subgroups, with trivial intersections. In [4], Allenby and Tang proved
that polygonal products of four finitely generated (briefly, f.g.) free abelian
groups, amalgamating cyclic subgroups with trivial intersections, are residu-
ally finite (briefly, RF). And they gave an example of a polygonal product of
four f.g. nilpotent groups which is not RF. However, certain polygonal prod-
ucts of f.g. nilpotent groups are RF or . [1, 8, 10]. In particular, polygonal
products of polycyclic-by-finite groups, amalgamating central subgroups with
trivial intersections, are known to be conjugacy separable {9, 11]. Unlike the
case for residual finiteness or for conjugacy separability, most polygonal prod-
ucts of four finitely generated abelian groups amalgamating cyclic subgroups
with trivial intersections are not subgroup separable [7].

In this paper we prove that polygonal products of any four groups, amal-
gamating central subgroups with trivial intersections, have Property E. Using
this result, we derive that outer automorphism groups of polygonal products of
four polycyclic-by-finite groups, amalgamating central subgroups with trivial
intersections, are residually finite (Theorem 4.5).
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2. Preliminaries

Briefly, polygonal products of groups can be considered as follows [4]: Let
P be a polygon. Assign a group G, to each vertex v and a group G, to
each edge e of P. Let o, and (3. be monomorphisms which embed G, as a
subgroup of the two vertex groups at the ends of the edge e. Then the polygonal
product G is defined to be the group presented by the generators and relations
of the vertex groups together with the extra relations obtained by identifying
ge@e and gef3, for each g. € G.. By abuse of language, we say that G is the
polygonal product of the (vertex) groups Go,G1,...,G,, amalgamating the
(edge) subgroups Hu,..., H,, Hy with trivial intersections, if G;—1 N G; = H;
and H; 1 N H; = 1, where 0 < 4 < n and the subscripts ¢ are taken modulo
n+ 1. We only consider the case n > 3 (see [4]).

We introduce some definitions and results that we shall use in this paper.

If A, B are groups, G = A xg B denotes the generalized free product of A
and B amalgamating the subgroup H. If z € G = A xy B then ||z|| denotes
the free product length of z in G.

If g € G, Inn g denotes the inner automorphism of G induced by g.

Out(G) denotes the outer automorphism group of G.

x ~¢ y means that x and y are conjugate in G.

RF is an abbreviation for “residually finite”.

Z(G) is the center of G and Z4(z) = {g € A| gz = zg}.

Definition 2.1. By a conjugating endomorphism/automorphism of a group
G we mean an endomorphism/automorphism « which is such that, for each
g € G, there exists kg € G, depending on g, so that a(g) = k; 'gk,.

Definition 2.2 (Grossman [5]). A group G has Property A if, for each con-
Jugating automorphism « of G, there exists a single element k& € G such that
alg) =k gk forall g€ G,ie., a =Inm k.

We extend Grossman’s Property A to include endomorphisms.
Definition 2.3 ([3]). A group G has Property E if, for each conjugating endo-

morphism « of G, there exists a single element k € G such that a(g) = k~'gk
forallg € G, ie., o =1Inn k.

Clearly, every abelian group has Property E and every group having Prop-
erty E has Property A. We will make use of the following result of Grossman
[5]:

Theorem 2.4 (Grossman [5]). Let B be a finitely generated, conjugacy sepa-
rable group with Property A. Then Out(B) is RF.

Theorem 2.5 ([3]). Non trivial free products of groups have Property E.

Theorem 2.6 ([12, Theorem 4.6]). Let G = A*y B and let x € G be of
manimal length in its conjugacy class. Suppose that y € G is cyclically reduced,
and that ¢ ~¢ y.
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(1) If ||z]] = 0, then ||ly|| < 1 and, if y € A, then there is a sequence

hi,ha, ..., hy of elements in H such thaty ~4 by ~p ha ~a -+ ~AB)
h, =c.

(2) Ifflz|| =1, then |ly|| = 1 and, either z,y € A and x ~a y, or x,y € B
and z ~p y.

(3) If ||z|| > 2, then ||z|| = ||y|| and y ~g x*, where z* is a cyclic permu-
tation of x.

3. A criterion

Theorem 3.1. Let G = A+y B, where A # H # B and H C Z(B). Suppose
A has Property E and the following conditions hold:
(C1) Ifue A andu™thu=h for all h € H thenu € H.
(C2) There exists an element a € A such that {a}*NH =0 and if u'au =
h'ah, where w € A and h',h € H, then h' = h™ .
Then G has Property E.

Proof. Let « be a conjugating endomorphism of G and a(g) = kg_lgk:g for
g € G. Without loss of generality, we can assume a(a) = a, where a satisfies
(C2). We shall show that « is an inner automorphism of G as follows:

(I) For each y € B, we can choose k, € A.
Let 1 #y € B and ky = ujus - - - u, be an alternating product of the shortest
length in G such that a(y) = k; 'yk,. Then k;! (ya)kya = a(ya) = a(y)a(a) =

ky_lyky -a:ur_ln-uz_1 -ul_lyul “Ug -+ Up_1 - Up - a. Thus,
(3.1) ya ~ut ugt o uT yug ug - Uy - urauy
(a) ye B\H.

(i) Suppose u; € A\H. If u, € B\H and r > 2, then the R.H.S. of (3.1) is
cyclically reduced of length 2(r + 1) > 6. Since the L.H.S. of (3.1) is of length
2, this case does not occur by Theorem 2.6.

If u. € A\H then, by (C2), urau,! ¢ H. The R.H.S. of (3.1) is cyclically
reduced of length 2r. Since the L.H.S. of (3.1) is of length 2, we have r = 1.
Hence k, = u; € A.

(ii) Suppose u; € B\H. Since H C Z(B) and y € B\H, uj'yu: ¢ H.

If u, € A\H then, by (C2), urau,! ¢ H. Hence the RH.S. of (3.1) is
cyclically reduced of length 2(r — 1). Since the L.H.S. of (3.1) is cyclically
reduced of length 2, we have r < 2 and k, = ujus € BA. Then, from (3.1), we
have ya ~g uy yu; - UaUS ! where both sides are cyclically reduced of length
2. Thus, by Theorem 2.6, ya ~g ul_lyul ~uzau2_1, which implies that y =
R~ (uTyuq)hy and a = hy*(ugaus H)h for some h,hy € H. By (C2), h = hy.
This implies that ui 'yu; = hiyhy'. Thus ofy) = k, 'yk, = uy tu yugus =
uy *(h1yh] ug. This means that we can choose k, = h] 'us € A.

If u, € B\H, then the R.H.S. of (3.1) is cyclically reduced of length 2r.
Since the L.H.S. of (3.1) is of length 2, we have r = 1. Hence k, = u, € B.
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Then, from (3.1), we have ya ~g uflyula, where both sides are cyclically
reduced of length 2. Thus, by Theorem 2.6, ya ~ g ul_lyul - a, which implies
that y = h='(u7'yu1)hs and a = h ' ah for some h, by € H. By (C2), h = h,.
This implies that u] 'yu; = hyyhy ', Thus a(y) = kylyky = ui yur = hiyhi '
This means that we can choose k, = hi' € H C A.

(b)y=heH.

Since H C Z(B), we may assume that u; € A. Suppose » > 2. Since
u; € A\H and H C Z(B), if uT'yu; € H then uy ul 'yujup = uT'yu;. This
reduces the length of ky, = ujus - - u,. Hence we may assume ul_lyul g H. If
ur € B\H, then the R.H.S. of (3.1) is cyclically reduced of length 2r > 4. If
ur € A\H and r > 2, then the R.H.S. of (3.1) is cyclically reduced of length
2(r — 1) > 2. Since the L.H.S. of (3.1) is of length at most 1 (y € H), neither
case satisfies (3.1) by Theorem 2.6. Hence r < 1. This means ky=u € A

(IT) There exists a fixed element u € Z4(a) so that k, = u for all y € B.
Fixb € B\H and fix ky = w € A (by (I)). Let y € B\H. Then kb_yl(by)kby =
a(by) = a(b)a(y) = w™'bw - k; 'yk,, where k, € A by (I). This implies

(3.2) by ~¢ b-wlcy_1 y - kywl,

Since b,y € B\H, if wk, ' € A\H then the R.H.S. of (3.2) is cyclically reduced
of length 4, in which case (3.2) cannot hold by Theorem 2.6. Thus wk,; ' € H.
Let ky = h.'w, where h, € H depends on .

Note that k;.' (ba)ks, = a(ba) = a(b)afa) = ky bky - a = wthybhy tw - a =
w™bw - a (H C Z(B)). This means
(3.3) ba ~g b-waw™ .

Since {a}* N H = 0, waw~! € A\H. Hence both sides of (3.3) are cyclically
reduced of length 2. This implies ba ~z b - waw™! by Theorem 2.6. Thus
b= h~'bh; and a = hy'waw 'h for some h,h; € H. Since H C Z(B) and
b € B, we have h; = h. Hence, a = hi'waw™'h;. Let u = h7'w. Then
u € ZA(a).

For each y € B\H, we have a(y) = k; 'yky, = w ' hyyh;'w = w™lyw =
w™hyyhi'w = wlyu. Hence a(y) = u='yu for all y € B\H. Now, for v € H,
let b € B\H and consider a(v) = a(vb-b7!) = a(vb)a(b™t) = u='(vb)u -
w7y = ulvu. Hence a(y) = v~ lyu for all y € B.

(III) G has Property E.
Let @ = Inn u~! o a. Then, by (II), @(y) = y for all y € B. Moreover, since
u € Za(a), @(a) = ua(a)u™! = uau™! = a. We shall show that @ is an inner
automorphism of G. For convenience, we again use @(g) = kg_l gkg for g € G.
Let x € A\H and k; = ujuz - - - u, be an alternating product of the shortest
length from G such that @(z) = k;'zk,. As before, we have k .} (za)k,, =
a(ra) = k;'ek, -a=u 1 - u'zu; - u, - a. Hence

-1 11 1
(3.4) TQ ~G Uy Uy UL TUT Uz e Up—] - Ur QU
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We now show: (a) u; € A and (b) r < 1.

(a) Suppose u; € B\H.If u, € A\H, then u,au;" ¢ H by (C2). Hence the
R.H.S. of (3.4) is cyclically reduced of length 2r. If u, € B\ H, then the
R.H.S. of (3.4) is cyclically reduced of length 2(r +1). Since the L.H.S.
of (3.4) is za € A, neither of these cases can occur by Theorem 2.6.
Hence u; € A.

(b) Suppose u; € A and r > 2. First, consider the case u 'zu; ¢ H. If
u, € B\H then the R.H.S. of (3.4) is cyclically reduced of length 2r.
And if u, € A\H (r > 3) then the R.H.S. of (3.4) is cyclically reduced
of length 2(r — 1), since urau,;! € A\H by (C2). As before, since the
length of the L.H.S. of (3.4) is at most 1, neither of these cases can
occur. Therefore, we can assume ul_lzul = hy € H. Since ug € B\H
and H C Z(B), uy*ul zujup = ui zu;. This reduces the length of
k. Hence, this case cannot occur.

Hence u; € A and r < 1, ie., k; € A for each x € A\H. Therefore,
the restriction of @ to A is a conjugating endomorphism of A. Since A has
property E, there exists ¢ € A such that @(z) = ¢ lzc for all z € A. Then
h = @(h) = ¢ 'he for all h € H. By (C1), we must have ¢ € H. Hence
a(b) =b=c'bc for all b € B. Thus @ = Inn ¢ on G and hence « is an inner
automorphism of G. This shows that G has Property E. (]

4. Polygonal products of abelian groups

In this section we consider a polygonal product G of four groups Ay, Ai,
A and As, amalgamating central subgroups H1, Ho, Hs and Hy, with trivial
intersections, that is, H;, H;+1 C Z(A;) and H;NH;; = 1 (the subscripts i are
taken modulo 4). Then the reduced polygonal product P of G is the polygonal
product of HoH;, HiHy, HyHs and H3Hy, amalgamating subgroups Hy, Hs,
Hj; and Hy. Then we have

(41) P:(HO*HQ)X (H1 *H3)
and
(4.2) G = (((P *mom, Ao) *m, 1, A1) *HyH, A2) *HyH, As.

On the other hand, if we put F = Agxg, A1, F = A3 xy, A2 and S = Hy * Hy,
then we have

(4.3) G =E=xgF.

Lemma 4.1. Let G be a polygonal product of groups Ag, A1, Az, and As,
amalgamating central subgroups Hy, Ho, Hs, and Hy, with trivial intersections.
If 2,y are in the centers of vertex groups and x ~g y then z = y.

Proof. As in (4.3), let G = E x5 F, where E = Ag xy, A1, F = A *pg, Ao

and S = Hy x Hy,. Without loss of generality, we assume 1 # z € Z(Ag) and
r~gy.
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(1) Suppose z ~¢ h for some h € §. We may assume that h is cyclically
reduced in § = Hy * Hy. By Theorem 2.6 (1), there exist cyclically reduced
elements s; € S such that £ ~g 81 ~p 89 ~g -+ ~5 s, ~p h. Since the
s; are cyclically reduced in S = Hg * Ha, ||s;]] = 1 or ||ss]| = 2n. Consider
x ~pg 81, where E = Ag *y, A;. Since z € Ag, by Theorem 2.6, we must have
lls1]] = 1, that is, either 1 # s; € Hy or 1 # s; € Hy. In both cases s; has the
minimal length 1 in its conjugacy class in E = Ag *y, Ai, since H; € Z(E)
and Hy N Hy =1 = Hy N Hy. Tt follows from Theorem 2.6 that s; € Ay and
x ~a, S1. Since x € Z(Ap), we have z = s,. Now, consider z = s; ~p 3s.
Then, as before, we have z = s;. Inductively, we have z = h. Since z ~¢g ¥,
Yy ~g h. Then, as in above, y = h. Therefore z = y.

(2) Suppose z %¢ h for any h € S. Then z has the minimal length 1 in its
conjugacy class in G = E xg F. By Theorem 2.6, x ~¢ y implies that z,y € E
andz ~py. lf x € H) C Z(E), then z = y. If x ¢ H;, then z has the minimal
length 1 in its conjugacy class in E = Ay #g, A;. Thus, by Theorem 2.6,
z,y € Ao and z ~ 4, y. Since z € Z(Ap), we have z = y. O

Lemma 4.2. Let G be a polygonal product of groups Ay, A;, Az, and As,
amalgamating central subgroups Hy, H,, Hs, and Hy, with trivial intersections.
(1) If u™*hu = h for all h € HyH\, where u € G, then u € Ap.
(2) If u=thu = h for all h € H H,, where u € G, then u € A;.
(3) If u™'hu = h for all h € HyHs, where u € G, then u € As.
(4) If u*hu = h for all h € H3Hy, where u € G, then u € As.

Proof. We only prove (1), since the others are similar. Let E = Ag * =, A1 and
F = A3 xp, Ay. Then G = E x5 F, where S = Hy « H,.

Suppose |lul| > 1 and v = fie;---, where f; € F\S and e; € E\S. Choose
1 # h € Hy. Then ||u~thu| = 2||ul| + 1. Hence u='hu # h. Thus we must
haveu=e1f1---.

Suppose u = ey fi--- and |ul| > 2, where e; € E\S and f; € F\S.
Since Hy C Z(E), for 1 # h € Hy, we have u™lhu = --- f{ e herfi--- =
- fT'hf1-+-. Thus lu="hu| = 2||u]| — 1 > 3. Hence u~'hu # h. Therefore
u=-¢e; € Eifu~thu=nhforall h € H,.

We shall show that if u € E = Ag g, Ay and u~'hu = h for all h € Hy,
then u € Ap.

Suppose u = c1a1 -+ € E = Ag *g, Ay where ¢; € Ai\H; and a; € Ao\ H;.
Let 1 # h € Ho. Then ju~'hu| = 2||u|| + 1. Hence u~'hu # h. Thus we must
have u = aic - -.

Suppose ||u|| > 2 and u = ayc1--- € E = Ag *y, A1, where a; € Ao\H1
and ¢; € A)\Hi. Since Hy C Z(Ag) for 1 # h € Hp, we have v 'hu =
-eiartharer - = ---¢Tthey -+ Thus lu=thu| = 2||ul| — 1 > 3. Hence
u'hu # h. This shows that if u € E and u hu = h for all h € Hp then
U=a € Ao.

Therefore if, for v € G, u=thu = h for all h € HyH, then u € Ay. O
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To prove that our polygonal product G in (4.2) has Property E, we begin
the following simple observation.

Lemma 4.3. If A and B have Property E, then G = A x B has Property E.

Proof. Let a(g) = k; gk, be a conjugating endomorphism of G. Since G =
A x B, we may assume kg = (z4,Yys) for g = (a,b), where a,z, € A and b,y €
B. Hence o(a,b) = (z7'azq,y; 'bys). Define au(a) = z;'az, and ap(h) =
Yy Yby,. Then aa,ap are conjugating endomorphisms of A, B, respectively.
Since A and B have Property E, there exist x € A and y € B such that

a4 = Inn z and ap = Inn y. Then o = Inn (z,y). Hence G = A x B has
Property E. O

Theorem 4.4. Let G be a polygonal product of groups Ay, A1, A2, and As,
amalgamating central subgroups Hy, Ho, Hs, and Hy, with trivial intersections.
Then G has Property E.

Proof. Let P be the reduced polygonal product of HoH,, H1Hs, H2Hj3, and
H3Hy, amalgamating Hy, Hs, Hs, and Hy. Then P = (H * Hz) X (Hy * H3).
Since free products of nontrivial groups have Property E by Theorem 2.5, Hy *
H; and Hy+Hj have Property E. Then, by Lemma 4.3, P = (HoxHs) % (H1xHj3)
has Property E.

Let B = ( (P *HoHy A()) *H, Hy ) XH;Hity Az for ¢ = 0,1,2,3. Then
G = Fs. Inductively, by assuming that P, P, and P, have Property E,
we shall show that G = P3 = P, xy, 5, A3 has Property E. We prove that
conditions in Theorem 3.1 are satisfied.

(C1) Suppose u € P> and u‘hu = h for all h € H3H,. Since P, is a
polygonal product of Ag, A1, A2, and H3Hy, amalgamating subgroups
H,, Hy, H3, and Hy, by Lemma 4.2 © € H3Hj.

(C2) Choose 1 # a € H,. Then, by Lemma 4.1, we have {a}?? N HsHy = 0.
Suppose u € P and v~ lau = h'ah for B',h € HzHy. Hence a ~p, ahh'.
Consider P» = E xg F, where E = Ag *#p, Ay, F = HoHs g, A> and § =
Hy* Hy. Since o € Hy C E, a has the minimal length 1 in its conjugacy class in
P>. Hence, by Theorem 2.6, ahh/ € E and a ~g ahh'. Since a € Hy C Z(E),
we have @ = ahh’. Hence h' = h™! as required.

Thus, by Theorem 3.1, G has Property E. d

By Theorem 2.4 we have the following:

Theorem 4.5. Let G be a polygonal product of groups Ag, A1, A2, and As,
amalgamating central subgroups Hy, Ho, Hs, and Hq, with trivial intersections.
If G is finitely generated and conjugacy separable then Out(G) is residually
finite.

Since polygonal products of polycyclic-by-finite groups Ag, A1, A2, and A3,
amalgamating central subgroups Hi, Ho, H3, and Hy, with trivial intersections,
are conjugacy separable [9, 11], by Theorem 2.4 we have the followings:
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Corollary 4.6. Let G be a polygonal product of polycyclic-by-finite groups Ay,
Ay, Ay and Az, amalgamating central subgroups Hy, Hy, Hs, and Hy, with
trivial intersections. Then Out(G) is residually finite.

Corollary 4.7. Let G be a polygonal product of finitely generated abelian
groups Ao, A1, Az, and As, amalgamating subgroups Hy, Hy, Hs, and Hy,
with trivial intersections. Then Out(G) is residually finite.
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