DOI QR코드

DOI QR Code

ON SUPER EDGE-MAGIC LABELING OF SOME GRAPHS

  • Park, Ji-Yeon (DEPARTMENT OF APPLIED MATHEMATICS KYUNG HEE UNIVERSITY) ;
  • Choi, Jin-Hyuk (DEPARTMENT OF APPLIED MATHEMATICS KYUNG HEE UNIVERSITY) ;
  • Bae, Jae-Hyeong (DEPARTMENT OF APPLIED MATHEMATICS KYUNG HEE UNIVERSITY)
  • Published : 2008.02.29

Abstract

A graph G = (V, E) is called super edge-magic if there exists a one-to-one map $\lambda$ from V $\cup$ E onto {1,2,3,...,|V|+|E|} such that $\lambda$(V)={1,2,...,|V|} and $\lambda(x)+\lambda(xy)+\lambda(y)$ is constant for every edge xy. In this paper, we investigate whether some families of graphs are super edge-magic or not.

Keywords

References

  1. H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), no. 2, 105-109
  2. A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461 https://doi.org/10.4153/CMB-1970-084-1
  3. G. Ringel and A. S. Llado, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996), 83-85
  4. W. D. Wallis, Magic Graphs, Birkhauser Boston, Inc., Boston, MA, 2001
  5. W. D. Wallis, E. T. Baskoro, M. Miller, and Slamin, Edge-magic total labelings, Australas. J. Combin. 22 (2000), 177-190
  6. D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996

Cited by

  1. Onk-edge-magic labelings of maximal outerplanar graphs vol.12, pp.1, 2015, https://doi.org/10.1016/j.akcej.2015.06.006
  2. The Jumping Knight and Other (Super) Edge-Magic Constructions vol.11, pp.2, 2014, https://doi.org/10.1007/s00009-013-0360-3
  3. On the k-edge magic graphs vol.45, 2014, https://doi.org/10.1016/j.endm.2013.11.008