DOI QR코드

DOI QR Code

Minimizing the Water Leaching of Zincborate Glass by La2O3 Addition for LTCC Applications

  • Hong, Seung-Hyuk (Department of Ceramic Engineering, Kangnung National University) ;
  • Jung, Eun-Hee (Department of Ceramic Engineering, Kangnung National University) ;
  • Oh, Chang-Yong (Temen Inc., Kangnung Science Industry Park) ;
  • Kim, Shin (Department of Ceramic Engineering, Kangnung National University) ;
  • Shin, Hyun-Ho (Department of Ceramic Engineering, Kangnung National University)
  • Published : 2008.03.31

Abstract

A series of $La_2O_3$-added zincborosilicate glasses was fabricated by systematically varying $La_2O_3$ addition up to 15mol% under the constraint of a ZnO:$B_2O_3$ ratio of 1:2. The degree of water leaching after ball milling of the prepared glasses in water medium was relatively quantified by the change in zinc peak intensity in energy dispersive spectroscopy. 8mol% of $La_2O_3$ was the most efficient addition in inhibiting the glass leaching by water. The role of $La_2O_3$ in inhibiting the leaching was explained in terms of change of structural units in the glass network. When the optimum 8mol% $La_2O_3$-added ZnO-$B_2O_3$ glass was used as sintering aid for $Al_2O_3$, the fabricated alumina-glass composite at $875^{\circ}C$ demonstrated dielectric constant of 6.11 and quality factor of 15470 GHz, indicating the potential of leaching-minimized $La_2O_3-ZnO-B_2O_3$ glass for application to low temperature co-firing ceramic technology.

Keywords

References

  1. H. Jantunen, A. Uusimaki, R. Rautioaho, and S. Leppavuori, "Temperature Coefficient of Microwave Resonance Frequency of a Low-Temperature Cofired Ceramic (LTCC) System," J. Am. Ceram. Soc., 85 [3] 697-99 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00153.x
  2. H.-K. Shin, H. Shin, S.-T. Bae, S. Lee, and K. S. Hong, "Effect of Oxygen Partial Pressure During Liquid-Phase Sintering on the Dielectric Properties of $0.9MgTiO_3-0.1CaTiO_3$," J. Am. Ceram. Soc., 91 [1] 132-38 (2008). https://doi.org/10.1111/j.1551-2916.2007.02016.x
  3. H.-K. Shin, H. Shin, H. S. Jung, S.-Y. Cho, J.-R. Kim, and K. S. Hong, "Role of Lithium Borosilicate Glass in the Decomposition of $MgTiO_3$-Based Dielectric Ceramic during Sintering," Mater. Res. Bull., 41 [7] 1206-14 (2006). https://doi.org/10.1016/j.materresbull.2005.10.020
  4. H. Shin, H.-K. Shin, H. S. Jung, and K. S. Hong, "Phase Evolution and Dielectric Properties of $MgTi_2O_5$ Ceramic Sintered with Lithium Borosilicate Glass," Mater. Res. Bull., 40 [11] 2021-28 (2005). https://doi.org/10.1016/j.materresbull.2005.04.025
  5. H.-K. Shin, H. Shin, S.-Y. Cho, and K. S. Hong, "Phase Evolution and Dielectric Properties of $MgTiO_3-CaTiO_3$ Based Ceramic Sintered with Lithium Borosilicate Glass for Application to Low Temperature Co-fired Ceramics," J. Am. Ceram. Soc., 88 [9] 2461-65 (2005). https://doi.org/10.1111/j.1551-2916.2005.00453.x
  6. J.-H. Park, Y.-J. Choi, W.-J. Ko, J.-H. Park, S. Nahm, and J.-G. Park, "Low-Temperature Sintering and Dielectric Properties of $BaTiO_3$-Based Ceramics for Embedded Capacitor of LTCC Module," J. Kor. Ceram. Soc., 42 [2] 81- 7 (2005). https://doi.org/10.4191/KCERS.2005.42.2.081
  7. W.-S. Lee, C.-H. Kim, M.-S. Ha, S.-J. Jeong, J.-S. Song, and B.-K. Ryu, "The Characterizations of Tape Casting for Low Temperature Sintered Microwave Ceramics Composite," J. Kor. Ceram. Soc., 42 [2] 132-39 (2005). https://doi.org/10.4191/KCERS.2005.42.2.132
  8. E.-S. Kim and K. M. Han, "Low Temperature Sintering and Microwave Dielectric Properties of $Zn_{1-X}x(Li_{1/2}La_{1/2})TiO_3$ Ceramics," J. Kor. Ceram. Soc., 41 [2] 165-69 (2004). https://doi.org/10.4191/KCERS.2004.41.2.165
  9. S.M. Jung, "Low Temperature Forming Glasses for LTCC and Co-Firing MLCC (in Korean)," Ceramist, 8 [3] 44-7 (2005).
  10. C.-W. Cho, Y.-S. Cho, J.-G. Yeo, S.-C. Choi, J. Kim, and U. Paik, "The Role of 2-Methyl-2,4-Pentanediol Modifier and Its Interaction with Poly(vinyl butyral) Binder in $BaTiO_3$ and $Li_2O-B_2O_3-BaO-SiO_2$ Glass Suspensions," Colloid. Surf. A, 224 [1/3] 83-91 (2003). https://doi.org/10.1016/S0927-7757(03)00261-9
  11. C.-W. Cho, Y.-S. Cho, J.-G. Yeo, J. Kim, and U. Paik, "Effects of PVB on the Gelation Behavior of $BaTiO_3$-Based Dielectric Particles and Glass Suspension," J. Eur. Ceram. Soc., 23 [13] 2315-22 (2003). https://doi.org/10.1016/S0955-2219(03)00087-6
  12. R. K. Brow, D. R. Tallant, and G. L. Turner, "Polyhedral Arrangements in Lanthanum Aluminoborate Glasses," J. Am. Ceram. Soc., 80 [5] 1239-44 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02970.x
  13. T. S. Izumitani, American Institute of Physics Translation Series, Optical Glass; p. 9. American Institute of Physics, New York, 1986.
  14. B. Karithikeyan, S. Mohan, and M. L., Baesso, "Spectroscopic and Glass Transition Studies on $Nd^{3+}$-Doped Sodium Zincborate Glasses," Physica B, 337 249-54 (2003). https://doi.org/10.1016/S0921-4526(03)00411-3
  15. C. N. Reddy and R. P. S. Chakradhar, "Elastic Properties and Spectroscopic Studies of Fast Ion Conducting $Li_2OZnO-B_2O_3$ Glass System," Mater. Res. Bull., 42 1337-47 (2007). https://doi.org/10.1016/j.materresbull.2006.10.001
  16. V. C. V. Gowda and R. V. Anavekar, "Elastic Properties and Spectroscopic Studies of $Na_2O-ZnO-B_2O_3$ Glass System," Bull. Mater. Sci., 27 [2] 199-205 (2004). https://doi.org/10.1007/BF02708505
  17. R. K. Brow, D. R. Tallant, and G. L. Turner, "Raman and $^{11}B$ Nuclear Magnetic Resonance Spectroscopic Studies of Alkaline-Earth Lanthanoborate Glasses," J. Am,. Ceram. Soc., 79 [9] 2410-16 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08990.x
  18. A. Kajinami, M. Nakamura, and S. Deki, "Composition Dependence of Local Structure in Lanthanoborate Glasses," J. Alloys Compounds, 408-412 1238-41 (2006). https://doi.org/10.1016/j.jallcom.2004.12.121