
Journal of Information Processing Systems, Vol.4, No.1, March 2008 33

An Experiment of Traceability-Driven System Testing

Eun Man Choi* and Kwang-Ik Seo*

Abstract: Traceability has been held as an important factor in testing activities as well as model-
driven development. Vertical traceability affords us opportunities to improve manageability from
models and test cases to a code in testing and debugging phase. This paper represents a vertical test
method which connects a system test level and an integration test level in testing stage by using UML.
An experiment how traceability works to effectively focus on error spots has been included by using
concrete examples of tracing from models to the code.

Keywords: Software Engineering, Software Testing, Traceability, UML-based Testing

1. Introduction

We often observe the cases in which paying heavy cost

to testing and maintenance due to the small errors induced
by mistakes. If traceability between different views and
levels of abstraction are not provided then their testing or
maintenance requires a great effort. Those cases suggest
that great expenses should be produced after completion of
a software system as well as under construction. In the
context of testing and maintenance activities, we often look
over model to the code back and forth to figure out error
spots.

At present the requirement or design specification is
used broadly for a software system test[1]. In requirements
and design stage, we analyze these artifacts to check errors
because the artifacts have faults. In testing stage, we test a
system by validation and verification.

However, the need of short time-to-market requires that
staged testing activities are more tightly connected by
traceability. If testers found faults in system level testing,
sometimes they need to look down the code level behalf of
just noticing faults to unit authors. Developers have to
modify source code bearing errors to make correctness
after finding out faults in testing stage. It is difficult to
inspect a logical structure and algorithm of source code
because most of test methods based on UML are black box
testing style. Therefore, it is hard to grasp the error spot
and trace a code line. Moreover, both test team and
development team need to spend lots of cost and time to
communicate about errors in case that test team or quality
assurance team and development team work separately.
When test team executes testing based on UML
specification and finds any faults they should explain not
only those faults but also various data and process used to
find faults to developers. That means that it needs lots of

effort to communicate each other. In cases of this, if it is
possible to associate the relation between test cases and
source code they can decrease costs and effort of
communicating to correct errors although they work
separately.

Testing and verification of a system based on UML
specification are classified in two types, before and after
implementation. The first one is UML verification methods
to judge the correctness of UML specification itself in
analysis and design phase before implementation. The
second one is a method of testing a system based on UML
specification after implementation. UML design test is
contributed to save money due to the early detection of
errors. But only testing design specification is not
sufficient to verify and confirm the software’s detail
functions and implementations.

Model based system testing also has the limitation that
can not cover the detail in syntactic level and microscope
functions of a system under test. It is useful to show the
correctness of a system in user requirements level. But it
has difficulties to locate error spots in code level and trace
from design to implementation. Error types of mismatching
with models and code would be the most critical weakness
of model-based system testing.

System testing needs to be more rigorous by vertical
trace from system to unit level. Detection of faults in
system testing should be flowed fast by tracing location of
errors in more detail level down. This paper proposes a
rigorous approach that designs test cases about system
functions by applying the proposed test method and studies
test methods to trace the relation between source code and
test cases. The proposed test method in this paper supports
to find error spots by tracing between test cases, UML
artifacts, and source code.

2. System Testing and Traceability

System testing is concerned with testing an entire system
based on its specification. The work presented in this

DOI : 10.3745/JIPS.2008.4.1.033

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

Manuscript received October 23, 2007; revised January 10, 2008;
accepted February 28, 2008.
Corresponding Author: Eun Man Choi
* Dept. of Computer Engineering, Dongguk University, Seoul, Korea

(emchoi@dgu.ac.kr, bradseo@dgu.ac.kr)

34 An Experiment of Traceability-Driven System Testing

section addresses system testing based on test cases
derived from UML models and traceability research up to
the present.

2.1 Specification Based System Testing

Braind and Labiche described the TOTEM methodology
that derives test requirements from UML use case
diagrams, interaction diagrams for each use case, class
diagram with OCL constraints, and data dictionary
describing classes, attributes, and methods[2][3].
Abdurazic and Offutt described a set of test requirements
based on collaboration diagrams in which all the messages
must be sent at least more than one times[4]. Also they
proposed a technique for generating test cases from a
restricted constraints of UML state diagrams[5]. Briand et
al. enhanced this approach to support call and signal events,
and various types of actions. A restricted form of UML
class diagrams is used by Sheetz et al. to generate system
test inputs. This approach converts a set of test objectives
derived from class diagrams into test input sets. This
approach ignores the details, such as generalization-
specialization relationship between classes, that are present
in class diagrams[6]. Hartmann et al. described an
approach for testing distributed components[7].

Most UML based testing methods mentioned above have
focus on functions or system tests. In other words, those
test only system functions or interactions of modules and
they have insufficient information about the relation
between testing targets and source code. It makes difficulty
to trace source code including errors although we find out
defects. Therefore the information and technique between
test cases and source code need to offer effective
communication between testers and developers.

2.2 Traceability

Traceability means the ability to trace the life of an
artefact from its inception to its use. Artefacts could be
requirements, code, models, reports and test cases, etc.
Generated traces can be used for several purposes:
documenting links from implementation to models in order
to show domain; managing changes to models; managing
changes to code; performing impacts analysis. Although, to
date, much of the research work in the literature has
focused on requirements traceability or change effect
analysis[8][9]. Also a lot of the research has carried out to
improve connection between artifacts. In general,
traceability is mentioned to trace from requirements to
source code to maintain and understand
artefacts[10][11][12][13]. Also there are the research of
automation and algorithm to improve performance[14][15].
Some research to testing is proposed but they study
convenience and efficiency to trace test documentations
not to trace error spots[16][17]. So this paper supports to
find errors and trace error spots in source code. Rigorous
system testing really needs a full traceability. If “trace” is
in place from requirements and test cases through models

to code, tester can see what parts of the model and code are
possibly defect after system testing.

Rigorous system testing also needs maximum domain
based on the specification. K. Seo and E. M. Choi
presented empirical comparison of major black-box testing
methods based on UML and demonstrated the different
domain results obtained from an experiment of testing
example software system[18]. They compared five test
methods: simple use case driven testing[19], collaboration
diagram driven testing[4], Object-Z driven testing[20],
OCL driven testing[21] and extended use case driven
testing[22]. The experiments found that the extended use
case driven testing method and the OCL driven method
have relatively broad testing domain. An extended use case
test method is a kind of black-box test based on system
functions by using a scenario which contains logical flow
test of the internal of program unit. Otherwise, the OCL
test method doesn’t verify the logical flow but it tests the
relationship with member variables or methods or objects.
Therefore, if we find errors during testing the scenario
instance which represents the logical flow by extended use
case test method and then inspect those errors by OCL test
method, testing work would be more efficient.

3. System Testing by Vertical Tracing

We define the meaning of vertical software testing in
two viewpoints. The first viewpoint includes an abstraction
level from unit testing level to system testing level through
integration test level. It is not restricted within only one
specific abstract test level. The second viewpoint is to
separate system function domains as test targets and
restrict testing scope on separated functions during testing
vertically.

3.1 Abstraction Level Viewpoint

Fig. 1 shows testing process by vertical tracing. The
process is based on V-model as the standard for carrying
out IT-projects with the German government[23][23]. Left
tail of the V development cycle represents the specification
stream where system specifications are defined. Right tail
of the V development cycle represents the testing stream
where systems are being tested against the specifications
defined on the left-tail. Usually unit test is executed by
developers. Both integration and system testing are
executed by testing or QA teams. If it is possible to
identify requirements, design, and implementation artifact
related to detected errors by system testing, more easily we
can execute integration and system testing and modify
source code. To realize this way when a tester finds errors
during system testing, he goes down integration test level
in detail to test the domain relying on error spot of system
testing. Also by the error information detected in
integration level they analyze unit test target and source
code. This approach can help finding the error spot through
entire test levels.

Eun Man Choi and Kwang-Ik Seo 35

Fig. 1. Vertical tracing based on V-model[23][24]

3.2 Testing Domain Viewpoint

After coding phase, testers check system functions
according to the user requirements. It is difficult for testers
to check out all parts of source code like white-box style.
Therefore functional test methods such as black-box test
style are frequently used to check customer's needs.

Use case models system’s behavior in the user point of
view and describes how the system interacts with end-users.
Use case slice means collection of all classes, messages,
conditions that describe single function of the system.
Generally speaking, a system provides many functions and
many classes inside of the system are interacting for one of
system’s functions. No all classes work to implement one
function and also no all methods and variables work in
classes to implement a specific function. Therefore it is
reasonable that testing only classes, methods, and variables
which really work together is more efficient than testing all
classes, methods, and variables to validate system
functions.

Fig. 2. Use Case slices

4. Traceability-Driven Testing

The big difference of rigorous system testing is that it

has more detail process to figure out the cause of faults.
Traceability level takes care in case of failures of system
testing. In Fig. 3, the test process shows the possibility of
vertical testing in abstract level and domain. To generate
test cases with function tests, use cases and class diagrams
defined in requirements analysis and design stage are
referred. OCL and MM(Method Message)-Path[25] are
extracted from class diagrams and sequence diagrams.

Pre-condition and post-condition expressed in OCL are
used in designing test cases for system testing. We generate
test data which is inputted into the first called class among
classes realizing use cases by using pre-condition. And the
results such as states of the last called class among classes
realizing the same use case are compared with post-
condition. In requirement analysis and design stage, OCL
defines multiplicity, constraints, input/output conditions of
a use case. Therefore post-condition of OCL can be used
as expected results. In Figure 2, to buy ticket customer
should input 0, 1, or 2 as a limited available date. It means
the range of input data is equal or larger than 0 and equal
or less than 2. MyBuy.buy() method receives one number
from CustomerScreen by customer. So the input data
range can be defined by OCL for MyBuy.buy() and the
input data can be test data for the BuyingTicket function. In
case the BuyingTicket function of ATSS is finished
successfully, PopupBox.setPopup() should return ‘true’
boolean value to TicketIssuerer. So return data type can be
defined by OCL for PopupBox.setPopup() and also the data
can be expected results as test oracles.

MM-Path is a sequence of methods by messaging to
realize a use case. We can make a function level test case
based on the first and last called classes within MM-Path
and test the result from finishing the MM-Path execution
by OCL. Also we can catch error information occurred
within MM-Path during function testing.

We can concern the correctness of integration testing
when errors break out in function testing. So we need the
way to check entire integration testing with error possible
functions. Also although the function testing is also success,

Fig. 3. Rigorous testing process

36 An Experiment of Traceability-Driven System Testing

tester can want to inspect interaction of classes. For this
case, repeatedly we split the MM-Path into a smaller
partition and execute integration testing. This approach
makes vertical testing that executes test from at first
function testing to integration testing of classes in a
function.

4.1 Traceability Support

In order to support traceability among models, source

code, and test cases the structure of link relations among
various artefacts are necessary. Each artefact has its own
structure and purpose respectively but semantic
associations are rarely exposed to representation. Most
engineers just guess tracing from software design to code
or vice versa and locate source code bearing errors by
experience.

This paper searches useful trace links to test and offers
connection by marking useful relation on artefacts. Above
all, we analyze association between analysis requirements
in various abstract levels and offers links to obtain
reference.

The rigorous system test method proposed in this paper
affords us to trace requirement model, object model, and
source code used in generating test cases as well as in
developing requirements models. The links to support
traceability can be composed as follows.

 Source code link – mark a tag processed by javadoc. For
instance, a tag such as {@link
ReservationUML.CustomerStaff} supports to trace
object model.

 UML model link – mark an extended tag to link each
element such as use case, class, state, interface, etc. in
UML model. For instance, if a class has
{implementedBy = java.appl.hotel.ReservationAppl.
java}, this supports traceability to source code.

 Test case link – generally test cases are represented in
table style as document like in Fig. 4. Hypertext link
offers traceability between documents.

Buying
tickets

Managing
information

Displaying
purchase

history

Reservation
Management

Menu
Management

Customer
Application

Manager
Application

Requirement Model Object Model

/*
/@ Customer Application
/*
package CustomerApp;

class CustomerScreen()
{

/*
/@ Manager Application
/*
package CounterStaffApp;

class StaffScreen()
{

Source Code

<<implementedBy>>

<<implementedBy>>

<<linkedBy>>

Test Cases

<<tracedBy>> <<tracedBy>> <<tracedBy>>

Fig. 4. Links for traceability support

Fig. 5. Classes realizing Use Case

Fig. 6. Traceability support from test cases to source code

Developing a complex software system has many factors
in analysis and design phase. Volume of source code and
test cases are also very huge. Accordingly since the number
of links to offer traceability can be extracted, introduction
of CASE tool is required. This tool will provide facility of
link change according to software modification. There are
two approaches of implementing traceability. The first one
is to create links for traceability and store link information
in repository. The other is to implement trace links within
tools or documents. The case of former needs to link
various CASE tools to repository built by XML.

To construct a vertical testing environment, we need
information for tracing between test cases and source code.
Fig. 5 shows use case slices of a hotel management system.
This has Reserve Room, Check-In Customer, and Check-
Out Customer functions. Each function is realized by
methods in three classes.

A unit of test case can be considered to be it of one use
case. So in Fig. 6 a test case is designed as a use case unit.
Fig. 6 shows the transformation from three test cases into
classes under test, scenario and source code.

Test cases have test domain composed of classes
realizing use cases. We can recognize that Room and
Reservation classes are belonging to Reserve Room test
domain. MM-Paths are used for generating test scenarios.
For instance, the test scenario to test Reserve Room
function is "Room.checkAvailability() →
Reservation.create()” and we can find errors during
executing this scenario. Also we can trace error spots in
source code from the information about classes, methods,
and attributes within the MM-Path. To construct this
testing environment, we need several links data about test
cases, classes, scenarios, methods and so on.
Fig. 7 shows the information of traceability links. In Fig.
7 we can see the tree structure which composed test cases,
test domain, scenarios, and source code. One test case has
relationship with several classes and also each class has
several methods and attributes. We can also

Eun Man Choi and Kwang-Ik Seo 37

Fig. 7. Traceability links data

compose scenarios from set of classes and methods.
Attributes are the testing target which is included in both
scenario and source code. Therefore we can have
traceability from functions to source code.

If source code is changed according to modify
requirements, also the link information should be changed.
In Fig. 5, suppose that ‘Check Out Customer’ add a
function to show the room service list before the payment
customer. It means that ‘printList()’ method should be
added in ‘Payment.’ It is not change { implementedBy =
java.appl.hotel.Payment.java} as UML link information but
add {@link ReservationUML.CustomerStaff.printList()} as
javadoc expression.

4.2 Experiment and result

An experiment is designed for 1) investigating what
kinds of information play important role in rigorous testing
via tracing and 2) comparing effectiveness of proposed
approach to recognize error spot. That includes rigorous
system testing ATSS(Automatic Ticket Sales System) as a
sample system by following procedure explained in Fig. 3.
ATSS supports to buy a meal ticket for customers after
checking date and browsing meal menu.

Table 1 shows that each combination of traceable
information covers. Use case, sequence, component, and
deployment diagram are used in system testing level
because they are mainly applied to function testing. We

Table 1. Accessible domain of combinatorial information
 UC SQ UC/SQ SQ/ST SQ/CL UC/SQ/

ST
UC/SQ/

CL
System ○ ○ ○ ○ ○ ○

Integration ○ ○ ○ ○ ○ ○
Test
Level

Unit ○ ○ ○
S-I ○ ○
I-U ○ ○

Meta
informa
tion U-S/C ○
Linkage process or
mechanism ○ ○ ○ ○

(UC: use case, SQ: sequence, UC/SQ: UC and SQ, SQ/CL: SQ and class,
SQ/ST: SQ and state chart, UC/SQ/ST: UC, SQ, and ST, UC/SQ/CL: UC,
SQ, and CL, S-I: System and Integration, I-U: Integration and Unit, U-
S/C: Unit and Source Code)

compared several meaningful combinations of UML
diagram information and source code to find out what are
the optimal combinations to provide traceability. There are
6 combination of traceable information shown at Table 1.
UC/SQ/CL combination has the largest domain, meta-
information to represent traceable linkage, and linkage
mechanism.

To figure out reasonable combination of traceable
information and show effectiveness of the proposed
rigorous method by supporting traceability we compared 6
combinations mentioned above. We implanted various
types of errors in developed sample system. Test object
domain is composed of three use cases of ATSS;
BuyingTicket, InformationManagement, and
SearchingBuyingHistory. Each use cases has 5 ~ 7 events
which can be elements of MM-path. Table 2 shows
BuyingTicket use case description in brief.

Table 2. BuyingTicket Use case
Use Case : BuyingTicket

Event

1. Customer inputs ID and Password to login.
2. Customer selects a date.
3. Customer searches a menu list.
4. Customer selects the menu.
5. Customer pays the money.
6. Customer receives a receipt.
7. Customer logouts.

Constraints Available date is only within 3 days from the present.

Table 3. Implanted error examples
Abstrac
tion
Level

Error Type Original Intended error

Message Passing
Error db.insertBuy() Db.insertPurchase()

Method Parameter
Type Error db.insert(String code) Db.insert(int code)

Integra
tion
Level

Method Return
Type Error return true; return true;

Method Algorithm
Error

if(ob == btnBuy){
if(Check()){

 Buy();
}

}
else if (ob == btnFood){
 if(Check()){
 detailFoodInfor();
}

}
else if(ob == btnSearch){
 getBuy();

db.initBuyList(ccDate);
}

}

if(ob == btnBuy){
if(Check()){

 Buy();
}

}
else if (ob == btnFood){
 if(Check()){

 detailFoodInfor();
}

else if(ob ==
btnSearch){

 getBuy();

db.initBuyList(ccDate);
}

}
Member Data Type
Error

String id;
id = ftID.getText();

ind id;
id = ftID.getText();

Member Data
Missing

Int openCount = 0;
openCount++;

No declaration
openCount

Unit
Level

Member Data
Range Error 0 <= intDate <= 2

if(intDate == 1)
{ccDate = “08-Mar-11”}

else if(intDate == 2)
{ccDate = “08-Mar-12”}

else if(intDate == 3)
{ccDate = “08-Mar-13”}

38 An Experiment of Traceability-Driven System Testing

Table 4. Error detection rate of combinatorial traceable
information

Pure System Testing Rigorous TestingAbstrac
tion
Level

Error Type
(Implanted Error
Number) UC SQ UC/S

Q
SQ/S
T SQ/CL UC/SQ/

ST
UC/SQ/
CL

Message Passing
Error (4) 0/4 4/4 4/4 0/4 0/4 0/4 4/4

Method Parameter
Type Error (5) 0/5 5/5 5/5 0/5 0/5 0/5 5/5

Integra
tion
Level

Method Return
Type Error (5) 0/5 5/5 5/5 0/5 0/5 0/5 5/5

Method Algorithm
Error (3) 0/3 0/3 0/3 3/3 0/3 3/3 3/3

Member Data Type
Error (5) 0/5 0/5 0/5 0/5 0/5 0/5 5/5

Member Data
Missing (5) 0/5 0/5 0/5 0/5 0/5 0/5 5/5

Unit
Level

Member Data
Range Error (1) 0/1 0/1 0/1 1/1 0/1 1/1 1/1

(error location information against source code/detected errors)

To compare efficiency of various text methods, some

errors are implanted intentionally in source code as test
target. Table 3 shows the examples with error types. The
errors are two kinds according to integration and unit
abstract level. Integration level is focused on interface
between methods and unit level is focused on elements like
variables or sequences in methods.

Table 4 shows the error detection rate of test execution
in experiment. From this result we conclude that
UC/SQ/CL combination has higher error detection and rate
location than the other combinations. The reason is that the
meaning represented in UML diagram and implemented in
source code can be traversed in detail during system level
testing. In addition we can find and zoom in events or
functions that cause failure by tracing links provided in
rigorous testing.

Looking the shadows zone in integration abstraction
level, they don’t have error location information even
though those test methods find failures. Usually black box
testing style is used for integration level so the information
to trace errors is scarce against source code. Testing
method of use case succeeds in finding the system bears
fault but this doesn’t give developers any clue to fix errors.
Developers just have to guess or suppose error spots by
their own experience.

In the cases of SQ/ST, SQ/CL, and UC/SQ/ST, they also
don’t have information to detect errors. In SQ/ST and
UC/SQ/ST, test methods don’t offer the mechanism to trace
error spots. Only sequence diagram is used as test scenario
to construct key test cases based on state diagram. In case
of SQ/CL, this method offers a test frame by using use case,
sequence diagram, and class diagram but not gives specific
method to design test case and domain. Especially after
using sequence diagram as integration test case, the way
applying class diagram is vague to support the frame from
sequence diagram. Accordingly it doesn’t show test method
based on class diagram in detail and the error location
information to trace is not enough. On the other hand,
proposed method in this paper has specific method
applying OCL to support class diagram based test. The

employment effects of OCL are explained later because it
becomes clearer in unit level test.

Table 3 shows also shadow zone in unit level. The
difference between error location information and detected
error numbers larger than integration level’s. The reason is
that system or integration test cases have description to
find errors in integration or unit level, but after finding this
they don’t offer relation between test case and error spots.
SQ and UC/SQ not only detect errors but also support
traceability in integration level. But they don’t offer error
information in unit level because those methods don’t have
the way to descript unit level information. UC/SQ/ST
method offers detection information to source code from
state diagram in the cases of finding a method algorithm
error and a member data range error. State diagram
supports to check dynamical class states on specific
condition from outside event or inside method. It can
describe history of class attributes by algorithm and checks
states of attribute at specific moment. However it doesn’t
have means to support information of type or missing of
attributes.

We can find that the gap between error location
information and detected error numbers gets higher into
low abstraction level. That shows shortcoming of black
box test style. Black box test style offer developer or test
engineer to economic test way, but after finding errors it is
not easy to trace error spots in source code. If test method
has plenty of test information in each abstraction level, it
supports traceability and offers the way to zoom in
probable error spots. Most UML based test methods have
limited information in use case or model abstraction level.
That result makes hard to support traceability. However the
proposed method in this paper ensures traceability and the
way to zoom in because it extracts test information about
each abstraction level and metadata during building test
case in process.

5. Conclusion

This paper has presented detail procedure for handling

traceability in system testing. Through the presentation of
example traceability links and experiment of error
detection/location it has been shown that the approach is
viable. As the example shows, the instances of traceability
links become quite large even for the small example used
in experiment. This will probably not be a practical
problem as the link information in them will be interpreted
by tools rather than humans.

In the context of effectiveness of error detection
supporting UC/SQ/CL combination for traceability link
were the best in our experiment. However inserted error
types should be extended to pick up the optimal
combination of link in general. The idea of system testing
based on traceability information illustrates more than one
tool may contribute to the traceability with needs to be able
to use this information in a consistent manner.

Eun Man Choi and Kwang-Ik Seo 39

Reference

[1] E. Dustine, Effective Software Testing: 50 specific
ways to improve your testing (Addison-Wesley,
2003).

[2] Lionel Briand and Yvan Labiche, A UML-based
approach to system testing, Proc. 4th International
Conf. on UML - The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, Toronto,
CA, 2001, pp.194-208.

[3] Lionel Brian and Yvan Labiche, A UML-based
approach to system testing, Software and System
Modeling, 1(1), 2002, pp.10-42.

[4] Aynur Abdurazik and Jeff Offutt, Using UML
collaboration diagrams for static checking and test
generation, Proc. 3rd International Conf. on UML -
- The Unified Modelling Language, Advancing the
Standard, York, UK, Vol. 1939 of LNCS, 2000,
pp.383-395.

[5] Jeff Offutt and Anyur Abdurazik, Generating tests
from UML specifications, Proc. 2nd International
Conf. on UML, 1999, pp.416-429.

[6] M. Scheetz, A. von Mayrhauser, R. France, E.
Dahlman, and A. E. Howe, Generating test cases
from an OO model with an AI planning system, Proc.
10th International Symposium on Software
Reliability Engineering, Boca Raton, Florida, 1999,
pp.250-259.

[7] J. Hartmann, C. Imoberdorf and M. Meisinger, UML-
Based integration testing, Proc. ACM SIGSOFT
International Symposium on Software Testing and
Analysis, Portland, 2002, pp.60-70.

[8] O. Gotel and A. W. Finkelstein, An analysis of the
requirements traceability problem, Proc. of the
International Conf. on Requirements Engineering,
Colorado Springs, CO, 1994, pp.94-102.

[9] B. Ramesh, Factors influencing requirements
traceability in practice, Communications of the ACM,
41(12), 1998, pp.34-44.

[10] Marcus, A and Maletic, J. I, Recovering
documentation-to-source-code traceability links using
latent semantic indexing, Proc. 25th International
Conference Software Engineering, 2003, pp.125-135.

[11] G. Antonio and G. Canfora, G. Casazza, Recovering
traceability links between code and documentation,
IEEE Transaction, Vol 28, 2002, pp.970-983.

[12] L. Naslavsky, T. Alspaugh, D. Richardson, and H.
Ziv, Using scenarios to support traceability, Proc.
TEFSE 2005, California, pp.25-31.

[13] T. Kastren, Towards Trace Based Model Synthesis
for Program Understanding and Test Automation,
Proc. International Conference on Software
Engineering Advances, 2007, pp.46-56.

[14] J. Hayes, A. Dekhtyar, and J. Osborne, Improving
requirements tracing via information retrieval, Proc.
11th IEEE Interantioanl Requirements Engineering
Conference, 2003, pp.138-147.

[15] J. Richardson and J Green, Automating traceability
for generated software artefacts, Proc, 19th
International Conference on Automated Software
Engineering, 2004, pp.356-366.

[16] M. Lormans and A. Van Deursen, Can LSI help
reconstructing requirements traceability in design and
test?, Proc. Conference on Software Maintenance and
Reengineering, 2006, pp.47-56.

[17] M. Deng and B. Cheng, Retrieval By Construction: A
traceability technique to support verification and
validation of UML formalizations, Proc. International
Jounal of Software Engineering and Knowledge
Engineering, Vol. 15, 2005, pp.837-872.

[18] K. Seo and E. M. Choi, Comparison of five black-box
testing methods for object-oriented software,” Proc.
4th ACIS International Conference on Software
Engineering Research, Management & Applications,
Seattle, WA, 2006, pp.213-220.

[19] D. Wood, J. Reis, Use case derived test cases, Proc.
on Conf. on Software Quality Engineering
STAREAST, 1999, http://www.stickyminds.com/s.asp?F
=S2021_ ART_2.

[20] Chun-Yu Chen, Constructing usage-based testing on
Object-Z formal specification based specification,
Ph.D. Dissertation, Auburn University, 1999.

[21] E. M. Choi, Generating test cases for object-oriented
design specification described by OCL,” Journal of
Korean Information Processing Society, 8-D(6), 2001,
pp.843-852.

[22] E. M. Choi, Use-case driven test for object-oriented
system, Proc. the IASTED International Conference,
ACTA Press, 2001, pp.164-169.

[23] Droschedl. W and Wiemers. M, Das V-Modell 97,
(German, Oldenbourg, 1999)

[24] Roger S. Pressman, Software Engineering A
Practitioner’s Approach 6th, (McGraw-Hill, 2005).

[25] Paul C. Jorgensen and Carl Erickson, Object-Oriented
Integration Testing, Communications of the ACM,
37(9), 1994, pp.30-37.

Eun Man Choi
He received the BS in Computer
Science from Dongguk Univ. in 1982
and MS degree in Computer Science
from KAIST in 1985. During
1985~1989, he stayed in Korea
Research Institute of Standards and
Science and DACOM Inc. to develop

Korean Information Standards and National Administrative
Information System. He received a Ph.D. degree in
Computer Science from Illinois Institute of Technology in
1993. He has been a professor at Dongguk Univ. since
1993. His research interests include Software Design,
Software Testing, Measurement, Aspect-Oriented
Programming.

40 An Experiment of Traceability-Driven System Testing

Kwang-Ik Seo
He received the BS and MS degrees in
Computer Engineering from Dongguk
Univ. in 2002 and 2004, respectively.
And now he is undertaking a doctorate
course as a member of the software
engineering lab at Dongguk Univ. His
research interests include Software

Testing, Software Quality, and Process.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmiR-HM
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Medium
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolSix
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharisSIL
 /CharisSIL-Bold
 /CharisSIL-BoldItalic
 /CharisSIL-Italic
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /CliperSKana
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Consolekana
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CurlzMT
 /DanzinRegular
 /DFKMincho-Bd-WIN-KSC-H
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Gaeul
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2porL
 /H2porM
 /H2sa1M
 /H2wulE
 /H2wulL
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYgprM
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYmjrE
 /HYmprL
 /HYMyeongJo-Medium
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPop-Medium
 /HYporM
 /HYRGoThic-Medium
 /HYsanB
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolE
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /JasmineUPC
 /JasmineUPC-Bold
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KirillicaWincyr
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /Munhem
 /MVBoli
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Pilgi2
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanNsB
 /SanNsL
 /SanNsM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SeoulCity
 /SeUtum
 /SFgoJ1-KSCpc-EUC-H
 /SFgoT-KSCpc-EUC-H
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimSun
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /TeXplusEF
 /TeXplusEF-Bold
 /TeXplusEM
 /TeXplusEM-BoldItalic
 /TeXplusEM-Italic
 /TeXplusEX
 /TeXplusMI
 /TeXplusMI-Bold
 /TeXplusRM
 /TeXplusRM-Bold
 /TeXplusRM-BoldItalic
 /TeXplusRM-Italic
 /TeXplusSA
 /TeXplusSB
 /TeXplusSY
 /TeXplusSY-Bold
 /TeXplusTE
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /ToodamB
 /ToodamL
 /ToodamM
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIChungM
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIHSalM
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO330
 /YDIYMjO350
 /YDIYMjO360
 /YetR-HM
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

