DOI QR코드

DOI QR Code

부분적 레이더 정보에 따른 면적평균강우의 관측오차

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage

  • 유철상 (고려대학교 건축.사회환경공학과) ;
  • 하은호 (연세대학교 정보통계학과) ;
  • 김병수 (도화종합기술공사 수자원 1부) ;
  • 김경준 (고려대학교 건축.사회환경공학과) ;
  • 최정호 (고려대학교 건축.사회환경공학과)
  • Yoo, Chul-Sang (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Ha, Eun-Ho (Department of Information and Statistics, College of Liberal Arts and Sciences, Yonsei University) ;
  • Kim, Byoung-Soo (Dohwa Consulting Engineers Co., LTD.) ;
  • Kim, Kyoung-Jun (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Choi, Jeong-Ho (Department of Civil, Environmental and Architectural Engineering, Korea University)
  • 발행 : 2008.05.25

초록

본 연구에서는 차폐 등을 이유로 레이더 강우가 대상 유역 또는 소유역을 완전하게 포괄하지 못하는 경우에 대해 가용한 레이더 강우를 이용하여 면적평균강우를 산정하는 경우에 포함될 수 있는 오차의 규모를 추정하였다. 본 연구는 한강 유역의 강우관측에 강화 레이더를 이용하는 경우를 적용 예로 살펴보았다. 한강 유역을 수자원단위지도의 중권역에 해당하는 총 20개의 소유역으로 나누어 검토할 경우, 총 소유역 중 강화 레이더로 완전히 관측되는 경우는 총 5개에 불과하며, 전혀 관측되지 않는 소유역도 3개가 있다. 나머지 12개의 소유역은 부분적인 레이더 정보만이 가용한 경우가 된다. 부분적인 레이더 정보만이 존재하는 경우의 관측오차는 기본적으로 관측되는 부분의 면적에 반비례하여 작아지지만, 동일한 면적일 경우에는 관측되는 면적이 몇 개로 쪼개져 있느냐에 따라 오차의 규모가 달라지게 된다. 동일한 관측면적일 경우에는 많이 쪼개져 있을수록 관측오차가 작아지게 된다. 본 연구의 대상유역인 한강유역의 경우에도 강화 레이더 강우자료를 이용하여 면적평균강우를 추정한다면 그 오차는 최소 수 %에서 최대 수십%까지 범위인 것으로 파악되었다.

This study estimated the error involved in the areal average rainfall derived from incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han-River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 20 mid-sized sub-basins of the Han-River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 12 sub-basins are partially covered by the radar to result in incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. Conditioned that the total area coverage remains the same, the sampling error decreases as the number of clusters increases. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han- River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

키워드

참고문헌

  1. 건설교통부 (1997). 임진강유역 종합수문관측망 타당성조사 및 기본계획수립, p. 316
  2. 건설교통부 (2002). 수문관측효율성 제고방안 연구용역(2단계) 보고서
  3. 국가수자원관리정보시스템 홈페이지. http://www.wamis.go.kr
  4. 김경준, 유철상 (2007). “강우공간상관구조의 변동특성.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 943-956 https://doi.org/10.3741/JKWRA.2007.40.12.943
  5. 유철상 (1997). “관측오차문제에 대한 다차원 강우모형의 적용.” 한국수자원학회논문집, 한국수자원학회, 제30권, 제5호, pp. 441-447
  6. 유철상, 김경준 (2007). “강우 레이더와 지상 우량계의 통합관측효과.” 한국수자원학회논문집, 한국수자원학회, 제40권, 11호, pp. 841-849 https://doi.org/10.3741/JKWRA.2007.40.11.841
  7. 유철상, 김병수, 김경준, 최정호 (2007). “우량계 강우를 이용한 레이더 강우의 GroundTruth방법 검토.” 한국수자원학회논문집, 한국수자원학회, 제40권, 제9호, pp. 743-754 https://doi.org/10.3741/JKWRA.2007.40.9.743
  8. 유철상, 정광식 (2001). “면적 평균 강우량의 추정 및 추정오차.” 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 317-326
  9. 유철상, 하은호, 김경준 (2006). “강우의 공간상관구조에 대한 무강우자료의 영향.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제2호, pp. 127-138 https://doi.org/10.3741/JKWRA.2006.39.2.127
  10. 정성화 (2005). 레이더 강우강도의 개성과 면적 강우량의 실시간 추정, 석사학위 논문, 경북대학교,p. 49
  11. 최규현, 한건연, 김광섭, 이창희 (2006). “레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템확립: II. Cokriging을 이용한 2차원 정량강우 산정.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제4호, pp. 335-346 https://doi.org/10.3741/JKWRA.2006.39.4.335
  12. 한국수자원공사 (2004). 전국하천 수자원.환경기초조사 종합계획, p. 345
  13. Anagnostou, E.N., Krajewski, W.F., Seo, D.J., and Johnson, E.R. (1998). "Meanfield rainfall bias studies for WSR88D." Journal of Hydrologic Engineering, Vol. 3, No. 3, pp. 149-159 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(149)
  14. Andrieu, H., Creutin, J.D. and Faure, D. (1997). "Use of weather radar for hydroloy of a mountainous area. Part 1: radar measurement interpretation." Journal of Hydrology, Vol. 913, pp. 1-25 https://doi.org/10.1016/S0022-1694(96)03202-7
  15. AzimiZonooz, A., Krajewski, W. F. and Bowles, D.S. (1989). "Spatial rainfall estimation by linear and non-linear co-kriging of radar-rainfall and raingage data." Stochastic Hydrology and Hydraulics, Vol. 3, pp. 51-67 https://doi.org/10.1007/BF01543427
  16. Bech, J,, Bernat, C., Lorente, J., and Bebbington, D. (2003). "The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient." Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 6, pp. 845-855 https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2
  17. Chiu, L.S., North, G.R., McConnel, A. and Short, D.A. (1990). "Rain estimation from satellite: effects of finite field of view." Journal of Geophysical Research, Vol. 95, pp. 2177.2186 https://doi.org/10.1029/JD095iD03p02177
  18. Creutin, J.D., Andrieu, H., and Faure, D. (1997). "Use of a weather radar for the hydrology of a mountainous area. Part II: radar measurement validation." Journal of Hydrology, Vol. 193, pp. 26-44 https://doi.org/10.1016/S0022-1694(96)03203-9
  19. Damant, C., Austin, G.L., Bellon, A., and Broughton, R.S. (1983). "Errors in the Thiessen technique for estimating areal rain amounts using weather radar data." Journal of Hydrology, Vol. 62, pp. 81-94 https://doi.org/10.1016/0022-1694(83)90095-1
  20. Gabella, M. and Perona, G. (1998). "Simulation of the orographic influence on weather radar using a geometricoptics approach." Journal of Atmospheric and Oceanic Technology, Vol. 15, No. 6, pp. 1485-1494 https://doi.org/10.1175/1520-0426(1998)015<1485:SOTOIO>2.0.CO;2
  21. Ha, E. and North, G.R. (1995). "Model studies of the beamfilling error for rainrate retrieval with microwave radiometers." Journal of Atmospheric and Oceanic Technology, Vol. 12, pp. 268-281 https://doi.org/10.1175/1520-0426(1995)012<0268:MSOTBF>2.0.CO;2
  22. Ha, E., North, G.R., Yoo, C., and Ha, K. (2002). "Evaluation of some ground truth designs for satellite estimates of rain rate." Journal of Atmospheric and Oceanic Technology, Vol. 19, No. 1, pp. 65-73 https://doi.org/10.1175/1520-0426(2002)019<0065:EOSGTD>2.0.CO;2
  23. Joss, J. and Waldvogel, A. (1990). "Precipitation measurements and hydrology." In Radar in Meteorology, Battan Memorial and 40th Anniversary Radar Meteorology Conference, Ed. D. Atlas, American Meteorological Society, pp. 577-606
  24. Kummerow, C. (1998). "Beam filling errors in passive microwave rainfall retrievals." Journal of Applied Meteorology, Vol. 37, pp. 356.370 https://doi.org/10.1175/1520-0450(1998)037<0356:BEIPMR>2.0.CO;2
  25. Lafont, D. and Guillemet, B. (2004). "Subpixel fractional cloud cover and inhomogeneity effects on microwave beam-filling error." Atmospheric Research, Vol. 72, pp. 149-168 https://doi.org/10.1016/j.atmosres.2004.03.013
  26. North, G.R. and Nakamoto, S. (1989). "Formalism for comparing rain estimation designs." Journal of Atmospheric and Oceanic Technology, Vol. 6, No. 6, pp. 985-992 https://doi.org/10.1175/1520-0426(1989)006<0985:FFCRED>2.0.CO;2
  27. North, G.R., Shen, S.S.P., and Upson, R.B. (1991). "Combining rain gages with satellite measurements for optimal estimates of areatime averaged rain rates." Water Resources Research, Vol. 27, No. 10, pp. 2785-2790 https://doi.org/10.1029/91WR01744
  28. North, G.R., Valdes, J.B., Ha, E., and Shen, S.S.P. (1994). "The ground truth problem for setellite estimates of rainrate." Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 4, pp. 1035-1041 https://doi.org/10.1175/1520-0426(1994)011<1035:TGTPFS>2.0.CO;2
  29. Seed, A., Siriwardena, L., Sun, X., Jordan, P., and Elliot, J. (2002). On the Calibration of Australian Weather Radars. Report 02/7, ISBN 1-876006-88-9, Cooperative Research Center for Catchment Hydrology, p. 40
  30. Seo, D.J. (1998a). "Realtime estimation of rainfall fields using rain gage data under fractional coverage conditions." Journal of Hydrology, Vol. 208, pp. 25-36 https://doi.org/10.1016/S0022-1694(98)00140-1
  31. Seo, D.J. (1998b). "Realtime estimation of rainfall fields using radar rainfall and rain gage data." Journal of Hydrology, Vol. 208, pp. 37-52 https://doi.org/10.1016/S0022-1694(98)00141-3
  32. Short, D.A. and North, G.R. (1990). "The beam filling error in ESMR5 observations of GATE rainfall." Journal of Geophysics, Vol. 95, pp. 2187-2193 https://doi.org/10.1029/JD095iD03p02187
  33. Steiner, M., Smith, J.A., Burges, S.J., Alonso, C.V., and Darden, R.W. (1999). "Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation." Water Resources Research, Vol. 35, No. 8, pp. 2487-2503 https://doi.org/10.1029/1999WR900142
  34. Valdes, J.B., Nakamoto, S., Shen, S.S.P., and North, G.R. (1990). "Estimation of multidimensional precipitation parameters by areal estimates of oceanic rainfall." Journal of Geophysicsal Research, Vol. 95, No. D3, pp. 2101-2111 https://doi.org/10.1029/JD095iD03p02101
  35. Waymire, E., Gupta, V.K., and RodriguezIturbe, I. (1984). "Spectral theory of rainfall intensity at the mesoscale." Water Resources Research, Vol. 20, No. 10, pp. 1453-1465 https://doi.org/10.1029/WR020i010p01453
  36. Yoo, C. (2000). "On the sampling errors from raingauges and microwave attenuation measurements." Stochastic Environmental Research and Risk Assessment, Vol. 14, pp. 69-77 https://doi.org/10.1007/s004770050052
  37. Yoo, C. (2001). "Sampling of soil moisture fields and related errors: Implications to the optimal sampling design." Advances in Water Resources, Vol. 24, No. 5, pp. 521-530 https://doi.org/10.1016/S0309-1708(00)00033-6
  38. Yoo, C. (2002). "A ground validation problem of the remotely sensed soil moisture data." Stochastic Environmental Research and Risk Assessment, Vol. 16, No. 3, pp. 175-187 https://doi.org/10.1007/s00477-002-0092-6
  39. Yoo, C. and Ha, E. (2001). "Multidimensional precipitation models and their application to the groundtruth problem: Multiple raingauge case." Water Engineering, Vol. 5, No. 1, pp. 51-58
  40. Yoo, C., Ha, E., and Shin, S.C. (2002). "Model vs. design sensitivity to the groundtruth problem of rainfall observation." Advances in Water Resources, Vol. 25, No. 6, pp. 651-661 https://doi.org/10.1016/S0309-1708(02)00029-5
  41. Yoo, C., Valdes, J.B., and North, G.R. (1996). "Stochastic modeling of multidimensional precipitation fields considering spectral structures." Water Resources Research, Vol. 32, No. 7, pp. 2175-2187 https://doi.org/10.1029/96WR01047

피인용 문헌

  1. Applicability Evaluation of Probability Matching Method for Parameter Estimation of Radar Rain Rate Equation vol.34, pp.6, 2014, https://doi.org/10.12652/Ksce.2014.34.6.1765
  2. Development of Radar Tracking Technique for the Short -Term Rainfall Field Forecasting- vol.48, pp.12, 2015, https://doi.org/10.3741/JKWRA.2015.48.12.995
  3. Comparison of Quantitative Precipitation Estimation Algorithms using Dual Polarization Radar Measurements in Korea vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.105
  4. Usefulness of Precipitable Water for Improvement of the Accuracy of Rainfall Occurrence Decision by Radar Data vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.37
  5. Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1041
  6. Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship vol.47, pp.2, 2014, https://doi.org/10.3741/JKWRA.2014.47.2.119
  7. Evaluation of Spatially Disproportionate Rain Gauge Network for the Correction of Mean-Field Bias of Radar Rainfall: A Case Study of Ganghwa Rain Radar vol.42, pp.6, 2009, https://doi.org/10.3741/JKWRA.2009.42.6.493
  8. Effect of Terrain and Rainfall Grid Size on Distributed Runoff Simulations vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.173