Hydrogen Storage Capacities of MOF-5 and Microporous Carbon: Effects of Pt Loading and Hybridization

MOF-5 및 마이크로다공성 카본의 수소 저장 성능: Pt 첨가 및 하이브리드화의 영향

  • Yunatri, Rika Tri (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Suh, Dong-Jin (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Suh, Young-Woong (Clean Energy Research Center, Korea Institute of Science and Technology)
  • ;
  • 서동진 (한국과학기술연구원 청정에너지연구센터) ;
  • 서영웅 (한국과학기술연구원 청정에너지연구센터)
  • Published : 2008.10.30

Abstract

In this study, we demonstrated that, although hydrogen molecules can be adsorbed onto the adsorbent such as MOF and MC itself, the loading of noble metal such as Pt is necessary to enhance the $H_2$ storage capacity since $H_2$ molecules can be dissociatively adsorbed on Pt metal and migrated to high-surface-area adsorbent via the primary spillover. In addition, the hybrid material have been prepared coupling MOF-5 with Pt/MC through carbon bridges formed by sucrose polymerization/carbonization. That this material showed the highest $H_2$ uptake at room temperature and about 100 bar is believed to be associated with the secondary spillover effect. Thus, such a strategy is very promising in developing $H_2$ storage technology using porous adsorbents. However, further experiments should be carried out to explore the choice of bridge carbon, the hybridization method, the dispersion technique of noble metals, etc.

최근 수소 저장물질로서 금속-유기 골격체(metal-organic frameworks; MOFs)가 주목을 받고 있으나 상온에서의 수소 저장성능이 낮은 문제점을 가지고 있어 이를 개선하기 위한 노력들이 필요하다. 본 연구에서는 MOF-5 및 제올라이트 Y로부터 합성된 마이크로다공성 카본을 합성하여 상온 및 약 80 bar에서 수소 저장성능을 측정하였으며, 그 결과 이들의 수소 저장성능은 각각 0.77 및 0.59 wt%였다. 이에 두 물질의 수소 저장성능을 향상시키기 위하여 5 wt% 백금을 각각의 물질에 담지시켜 백금이 없는 물질에 비하여 1.21 내지 1.25배의 개선 효과를 얻을 수 있었다. 한편 수소 spillover 현상을 활용하기 위하여 MOF-5 및 Pt/마이크로다공성 카본을 sucrose와 함께 탄화시킨 결과, 최종 하이브리드 물질이 상온 및 약 82 bar에서 0.93 wt%의 수소 저장성능을 보였으며, 이는 백금에 의하여 흡착된 수소 원자가 MOF-5 및 마이크로다공성 카본으로 이동하여 저장되는 것으로 해석된다.

Keywords

References

  1. V. I. Isaeva and L. M. Kustov, "Metal-Organic Frameworks - New Materials for Hydrogen Storage", Russ. J. Gen. Chem., Vol. 77, 2007, pp. 56-72
  2. M. Sabo, A. Henschel, H. Frode, E. Klemm, and S. Kaskel, "Solution Infiltration of Palladium into MOF-5: Synthesis, Physisorption and Catalytic Properties", J. Mater. Chem., Vol. 17, 2007, pp. 3827-3832 https://doi.org/10.1039/b706432b
  3. Y. Li and R. T. Yang, "Significantly Enhanced Storage in Metal-Organic Frameworks via Spillover", J. Am. Chem. Soc., Vol. 128, 2006, pp. 726-727 https://doi.org/10.1021/ja056831s
  4. W. C. Conner, Jr. and J. L. Falconer, "Spillover in Heterogeneous Catalysis", Chem. Rev., Vol. 95, 1995, pp. 759-789 https://doi.org/10.1021/cr00035a014
  5. A. R. Millward and O. M. Yaghi, "Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature", J. Am. Chem. Soc., Vol. 127, 2005, pp. 17998-17999 https://doi.org/10.1021/ja0570032
  6. Z. Ma, T. Kyotani, and A. Tomita, "Synthesis Methods for Preparing Microporous Carbons with a Structural Regularity of Zeolite Y", Carbon, Vol. 40, 2002, pp. 2367-2374 https://doi.org/10.1016/S0008-6223(02)00120-3
  7. Y. Li and R. T. Yang, "Hydrogen Storage on Platinum Nanoparticles Doped on Superactivated Carbon", J. Phys. Chem. C, Vol. 111, 2007, pp. 11086-11094 https://doi.org/10.1021/jp072867q
  8. Y. Li and R. T. Yang, "Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover", J. Am. Chem. Soc., Vol. 128, 2006, pp. 8136-8137
  9. G. M. Nam, B. M. Jeong, S. H. Kang, B. K. Lee, and D. K. Choi, "Equilibrium Isotherm of CH4, C2H6, C2H4, N2, and H2 on Zeolite 5A Using a Static Volumetric Method", J. Chem. Eng. Data, Vol. 50, 2005, pp. 72-76 https://doi.org/10.1021/je0498309
  10. M. Hirscher and B. Panella, "Hydrogen Strorage in Metal-Organic Frameworks", Scr. Mater., Vol 56, 2007, pp. 809-812 https://doi.org/10.1016/j.scriptamat.2007.01.005
  11. Y. Y. Liu, J. L. Zeng, J. Zhang, F. Xu, and L. X. Sun, "Improved Hydrogen Storage in The Modified Metal-Organic Framework by Hydrogen Spillover Effect", Int. J. Hydrog. Energy, Vol. 32, 2007, pp. 4005-4010 https://doi.org/10.1016/j.ijhydene.2007.04.029