Computation of Nonlinear Elastic Strains Occurring in the Leaflet of the Edwards MIRA Mechanical Heart Valve by the Applied High Blood Pressure

혈압에 의해 Edwards MIRA 기계식인공심장판막에 발생하는 비선형 탄성변형률의 계산

  • 권영주 (홍익대학교 기계정보공학과) ;
  • 윤구영 (홍익대학교 기계정보공학과)
  • Published : 2008.10.30

Abstract

This paper presents a computation of nonlinear elastic strains that may occur in the leaflet of the Edwards MIRA mechanical heart valve by the applied high blood pressure using the finite element analysis methodology. By adopting numerical analysis techniques of the commercial finite element analysis code, NISA, structural analyses of the Edwards MIRA mechanical heart valve are performed for the slight variation of leaflet thickness to get the elastic strains occurring in the leaflet while the high blood fluid pressures are applied to the leaflet surface in order that the maximum stress occurring in the leaflet may be less than the yield stress of the leaflet material(Si-Alloyed PyC). And so, only the geometric non-linearity is assumed because large geometric nonlinear elastic strains are expected rather than material nonlinear strains due to the applied high blood pressure. Computed linear and nonlinear elastic strains are compared to make sure the non-linearity of the computed elastic strain. The comparison result shows that large elastic strains occur clearly in the very thin leaflets as high blood pressures are applied. However, only the linear elastic strains occur for low blood pressures, and also for thick leaflets even for the high blood pressures. Hence the nonlinear structural analysis is very required in the structural design of a mechanical heart valve.

본 논문은 유한요소법을 이용하여 Edwards MIRA 기계식인공심장판막에 높은 혈압이 작용할 때 발생하는 비선형 탄성 변형률을 계산하였다. 상용 유한요소해석 코드인 MISA의 수치해석기법을 채택하여 Edwards MIRA 기계식인공심장판막에 대하여 판첨의 두께를 조금씩 변화시키면서 구조해석을 수행하여 판첨내에 발생하는 최대응력이 판첨재질(Si-Alloyed PyC)의 항복응력보다 작도록 판첨 표면에 혈압이 작용할 시에 판첨에 발생하는 탄성변형률을 계산하였다. 따라서 높은 혈압 작용 시에 판첨의 재질에 따른 물질비선형변형률 보다는 구조적인 기하학적 형강비선형변형률만이 예상되기 때문에 오직 기하학적 형상비선형성만 가정되었다. 계산된 선형, 비선형 변형률들은 발생한 탄성변형률의 비선형성을 확인하기 위하여 비교검토 되었다 비교검토 결과는 비교적 매우 얇은 판첨에서 혈압이 높게 작용할 때에 높은 탄성변형률이 발생하는 것을 보여주고 있다. 그렇지만 동시에 해석결과는 매우 낮은 혈압이나 매우 두꺼운 두께의 판첨에서는 높은 혈압이 작용하더라도 매우 작은 탄성변형률이 발생함을 보여주고 있다. 따라서 기계식인공심장판막의 구조설계 시 비선형 구조해석은 꼭 필요함을 알 수 있다.

Keywords

References

  1. Bernacca, G.M., Mackay, T.G., Wilkinson, R., Wheatley, D.J. (1995) Calcification and fatigue failure in polyurethane heart valve. Biomaterials 16, pp.279-285 https://doi.org/10.1016/0142-9612(95)93255-C
  2. Cacciola, G., Peters, G.W.M., Schreurs, P.J.G., Janssen, J.D. (1996) Development and testing of a synthetic fibre-reinforced three-leaflet heart valve. Biomimetics 4, pp. 83-103
  3. Choi, C.R.,Kim, C.N., Kwon, Y.J., Lee, J.W. (2003) Pulsatile blood flows through a bileaflet mechanical heart valve with different approach methods of numerical analysis ; pulsatile flows with fixed leaflets and interacted with moving leaflets. KSME International Journal 17(7), pp.1073-1082
  4. Dal Pan, F., Donzella, G., Fucci, C., Schreiber, M. (2005) Structural effects of an innovative surgical technique to repair heart valve defects. Journal of Biomechanics 38, pp.2460-2471 https://doi.org/10.1016/j.jbiomech.2004.10.005
  5. Farahifar, D., Cassot, F., Bodard, H. (1985) Velocity profiles in the weak of two prosthetic heart valves using a new cardiovascular simulator. Journal of Biomechanics 18(10), pp.789-802 https://doi.org/10.1016/0021-9290(85)90054-5
  6. Gross, J.M., Shermer, C.D., Hwang, N.H.C. (1988) Vortex shedding in bileaflet heart valve prostheses. Trans. Am. Soc. Artif. Intern. Organs 34, pp.845-860
  7. Hasenkam, J.M., Nygaard, H., Giersiepen, M., Reul, H., Stodkilde-Jorgensen, H. (1988) Turbulent stressmeasurements downstream of six mechanical aortic valves in a pulsatile flow model. Journal of Biomechanics 21, pp.631-645 https://doi.org/10.1016/0021-9290(88)90201-1
  8. Hose, D.R., Narracott, A.J., Penrose, J.M.T., Baguley, D., Jores, I.P., Lawford, P.V. (2006) Fundamental mechanics of aortic heart valve closure. Journal of Biomechanics 39(5), pp.958-967 https://doi.org/10.1016/j.jbiomech.2005.01.029
  9. Kwon, Y.J., Kim, C.N., Lee, J.W. (2003) A structural analysis on the leaflet motion induced by the blood flow for design of a bileaflet mechanical heart valve prosthesis. KSME International Journal 17(9), pp.1316-1323
  10. Kwon, Y.J. (2003) A Structural analysis of a mechanical heart valve prosthesis with flat leaflet. JSME International Journal Series A, 46(3), pp.550-558 https://doi.org/10.1299/jsmea.46.550
  11. Kwon, Y.J. (2008) Structural analysis of a bileaflet mechanical hart valve prosthesis with curved leaflet, accepted by Journal of Mechanical Science and Technology in June, 2008 https://doi.org/10.1007/s12206-008-0621-4
  12. Kim, H.G., Lu, J., Sacks, M.S., Chandran, K.B. (2008), Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Annals of Biomedical Engineering 36(2), pp.262-275 https://doi.org/10.1007/s10439-007-9409-4
  13. Lawford, P.V., Narracott, A.J., Diaz, V., Hose, D.R. (2006) Computation of closure forces for mechanical heart valves. Journal of Biomechanics 39, p.S305
  14. Nygaard, H., Paulsen, P.K., Hasenkam, J.M., Pedersen, E.M., Rovsing, P.E. (1994) Turbulent stresses downstream of three mechanical aortic valve prostheses in humanbeings. The Journal of Thoracic Cardiovascular Surgery 107, pp.438-446
  15. Pertold, K., Pappitsch, G. (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 28(7), pp.845-856 https://doi.org/10.1016/0021-9290(95)95273-8
  16. Rutten, M.C.M. (1998) Fluid-solid interaction in large arteries. Ph.D. Thesis, Eindhoven University of Technology, The Netherlands