부분탈피 고정방식 프리스트레인 가변형 광섬유격자센서를 이용한 지하철 구조물 변위 모니터링시스템

Monitoring System For The Subway Structures Using Prestrained FBG Sensors Fixed With Partially Stripped Fibers

  • 발행 : 2008.12.30

초록

광섬유의 클래딩 부분을 별도의 고정구에 직접 부착하는 방식으로 고정하여, 변형발생 시 광케이블을 구성하는 재료들 사이에서 발생하는 미끄러짐(Slip)현상을 방지하고, 외력에 의해 발생하는 변형을 정확하게 측정이 가능하도록 함과 기존 광섬유격자센서가 자체적으로 압축변형의 측정이 곤란한 점을 개선하기 위해 미리 긴장(Pre-Strain)상태를 유지하기 위하여 두 개의 접점사이를 볼트와 너트로 조절하여 프리스트레인 가변이 가능하도록 하여 인장/압축변형 측정을 가능하게 한 광섬유격자센서 패키지를 사용하는 지하구조물 변위 모니터링시스템이 본 연구에 의해 개발되었다. 이러한 광섬유격자센서 패키지는 콘크리트 라이닝구조물에 콘크리트의 불균일성을 극복하고 대표성을 가지기 위해 1미터 게이지 길이를 갖도록 하여 모니터링시스템에 적용되었으며, 대구 지하철 지하구조물에 현재 운영 중인 이 시스템은 한국전력 공동구 설치공사가 진행되면서 구조물에 미치는 영향을 판단하기 위한 모니터링시스템으로 적용되었다.

A monitoring system for the subway structures using prestrained FBG sensors fixed with partially stripped fibers was developed. The sensor packages had pre-strain controllable fixtures. Tensile and compressive strain of the structure could be measured without slip. The FBG sensor system was applied to the concrete lining structure in Taegu subway. Near the structure, the narrow tunnel construction, for the electric power cables and telecommunication cables, started. We wanted to measure the deformations of the subway structures due to the construction by the FBG sensor. The applied sensors had the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well.

키워드

참고문헌

  1. 김기수 (2003) System Identification에 활용할 수 있는 광섬유 센서 계측 시스템, 전산구조공학, 16(1) pp.39-43
  2. Hill, K. O., Fujii, Y.. Johnson, D. C., Kawasaki, B. S. (1978) Photosensitivity in Optical Fiber Waveguides. Application to Reflection Filter Fabrication, Appl. Phys. Lett., 32(10), pp.647-649 https://doi.org/10.1063/1.89881
  3. Kersey, A. D., Berkoff, T. A., Morey, W. W. (1992) High-Resolution Fiber-Grating Based Strain Sensor with Interferometric Wavelength-Shift Detection, ELECTRONICS LETTERS, 30th, 28(3), pp.516-518
  4. Kersey, A. D., Koo, K. P., Davis, M. A. (1994) Fiber Optic Bragg Grating Laser Sensors, SPIE, 2292, pp.102-112
  5. Kim, K. S., Breslauer, M., Springer, G. S. (1992) The Effect of Embedded Sensor on the Strength of Composite Laminates, J. of Reinforced Plast and Comp, 2, pp.949-958
  6. Kim, K. S., Kollar, L., Springer, G. S. (1993) A Model of Embedded Fiber Optic Fabry-Perot Temperature and Strain Sensors, J. of Composite Materials, 27, pp.1618-1662 https://doi.org/10.1177/002199839302701701
  7. Koo, K. P., Kersey, A. D. (1995) Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing, Journal of Lightwave Technology, 13(7), pp.1243-1248 https://doi.org/10.1109/50.400692
  8. Measures, R. M. (1991) Fiber optic sensor considerations and developments for smart structures, Proc. SPIE, 1588, p.282
  9. Melle, M., Kexing Liu, Raymond M. (1992) A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors, IEEE PHOTONICS TECHNOLOGY LETTERS, 4(5), pp.516-518 https://doi.org/10.1109/68.136506
  10. Meltz, G., Morey, W. W., Glenn, W. H. (1989) Formation of Bragg grating in optical fibers by a transverse holographic method, Optics Letters, 14, pp.823-825 https://doi.org/10.1364/OL.14.000823
  11. Morey, W. W., Dunphy, J. R., Meltz, G. (1994) Multiplexing Fiber Bragg Grating Sensor, SPIE, Vol. 1586, Paper #22, Boston, pp.216-224
  12. Morey, W. W., Meltz, G., Glenn, W. H. (1989) Fiber Optic Bragg Grating Sensors, SPIE, 1169, pp.98-106
  13. Stone, J., Stulz, L. W. (1987) Pigtailed high-finesse tunable fiber Fabry-Perot Interferometer with large, medium and small free spectral range, Elect. Lett., 23(15), pp.781-783 https://doi.org/10.1049/el:19870554