DOI QR코드

DOI QR Code

세로축 자동조종 비행제어법칙 개선에 관한 연구

A Study on the Improvement of Pitch Autopilot Flight Control Law

  • 발행 : 2008.11.04

초록

고등훈련기급에 탑재되어 있는 전기식 비행제어계통 (digital fly-by-wire flight control system)은 통합 다기능 감지기(IMFP : Integrated Multi-Function Probe)를 이용하여 항공기의 고도/속도/받음각 정보를 획득한다. 고등훈련기에는 3개의 IMFP가 장착되어 있으며, 이는 비행제어법칙에 3중의 공기정보를 제공한다. IMFP로부터 제공된 3개의 공기 정보는 중간 값을 채택하여 보다 신뢰성 있는 정보를 비행제어법칙에 제공한다. 초음속 비행시험 결과, 초음속 영역에서 발생하는 잡음이 포함된 IMFP로 인하여 고도유지모드 자동조종장치를 작동시켰을 때, 세로축으로 진동현상이 발생하였다. 이러한 현상은 자동조종장치를 이용하여 비행을 할 경우, 항공기 안정성 및 조종성을 저해할 수 있다. 본 논문에서는 초음속 영역에서 발생하는 IMFP 잡음정보가 자동조종장치에 영향을 미치지 않도록 비행제어법칙을 설계하였으며, 제어법칙설계 및 귀환이득을 조율하여 선회비행 시에 피치자세각 유지모드를 개선하였다. 설계된 비행제어법칙은 비실시간 시뮬레이션 및 비행시험을 통하여 검증하였다.

The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

키워드

참고문헌

  1. Neal, T. P. and Smith, R. E., "An Inflight Investigation to Develop System Design Criteria for Fighter Airplanes", Air Force Flight Dynamics laboratory, WPAFB, Ohio, AFFDL TR-70-74, 1970.
  2. Cooper, G. E. and Harper, R. P., "The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities", NASA TN-D 5153, 1969.
  3. Anderson, M. R. and Schmidt, D. T., "Closed-Loop Pilot Vehicle Analysis of the Approach and Landing Task", Journal of Guidance and Control, Vol. 10, No. 2, pp. 187-194, 1987. https://doi.org/10.2514/3.20201
  4. McRuer, D. T. and Schmidt, D. T., "Pilot -Vehicle analysis of Multi-Axis Tasks", Journal of Guidance and Control, Vol. 13, No. 2, pp. 348-355, 1990. https://doi.org/10.2514/3.20556
  5. C. S Kim, B. M. Hwang, S. Y. Kim, S. J. Kim., "A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Law Altitude", Journal of The Korean Society for Aeronautical and Space Science, Vol. 33, No. 11, pp. 60-68, 2005. https://doi.org/10.5139/JKSAS.2005.33.11.080
  6. C. S Kim, G. B. Hur, B. M Hwang, I. J. Cho, S. j. Kim., "Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer", International Journal of The Korean Society for Aeronautical and Space Science, Vol. 8, No. 1, May, 2007. https://doi.org/10.5139/IJASS.2007.8.1.032
  7. C. S Kim, B. M Hwang, S. J. Kim., "A Study on the Longitudinal Flight Control Law of T-50", Journal of Control, Automation and Systems Engineering, Vol. 11, No. 11, pp. 963-969, 2005. https://doi.org/10.5302/J.ICROS.2005.11.11.963
  8. C. S Kim, B. M Hwang, Y. S. Kang., "A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis", Journal of Control, Automation and Systems Engineering, Vol. 12, No. 6, pp. 913-919, 2006. https://doi.org/10.5302/J.ICROS.2006.12.7.621