DOI QR코드

DOI QR Code

Estimation for Seaweed Biomass Using Regression: A Methodological Approach

회귀분석을 이용한 해조류 생물량 측정을 위한 방법론

  • Ko, Young-Wook (Department of Biological Science, Sungkyunkwan University) ;
  • Sung, Gun-Hee (Department of Biological Science, Sungkyunkwan University) ;
  • Kim, Jeong-Ha (Department of Biological Science, Sungkyunkwan University)
  • Published : 2008.12.31

Abstract

To estimate seaweed biomass or standing crop, a nondestructive sampling can be beneficial because of not much destroying living plants and saving time in field works. We suggest a methodological procedure to estimate seaweed biomass per unit area in marine benthic habitats by using species-specific regression equations. Percent cover data are required from the field samplings for most species to convert them to weight data. However, for tall macroalgae such as kelps we need density data and their size (e.g., size class for subtidal kelps) of individuals. We propose that the field sampling should be done with 5 replicates of 50 cm x 50 cm quadrat at three zones of intertidals (upper, middle, lower) and three depth points (1, 5, 10 m) in subtidals. To obtain a reliable regression equation for a species, a substantial number of replicate is necessary from destructive samplings. The regression equation of a species can be further specified by different locality and different season, especially for the species with variable morphology temporally and spatially. Example estimation carried out in Onpyung, Jeju Island, Korea is provided to compare estimated values with real weight data.

Keywords

References

  1. 배수환, 이종화. 1981. 인공어초의 생물학적 연구. 군산수대연보 15:15-21
  2. 안영화, 김준택. 2000. 제주도 연안 인공어초 시설어장의 자원조성과 생산효과에 관한 연구. 제주대 해양연구논문집 24:27-35
  3. Aberg P. 1990. Measuring size and choosing category size for a transition matrix study of the seaweed Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 63:281-287 https://doi.org/10.3354/meps063281
  4. Box G.E.P. and Watson G.S. 1962. Robustness to non-normality of regression tests. Biometrika 49:93-106 https://doi.org/10.1093/biomet/49.1-2.93
  5. Chauhan V.D. 1987. Seaweed biomass as a source of energy. Energy 12:375-378 https://doi.org/10.1016/0360-5442(87)90107-1
  6. Critchley A.T. and Ohno M. 1998. Seaweed resources of the world. Japan International Cooperation Agency, Nagai, 431 pp
  7. De Wreede R.E. 1985. Destructive (harvest) sampling. In:Littler M.M. and Littler D.S. (eds), Handbook of Phycological Methods. Cambridge University Press, Cambridge. pp. 147-159
  8. Gao K. and McKinley K.R. 1994. Use of macroalgae for marine biomass production and CO$_2$ remediation:a review. J. Appl. Phycol. 6:45-60 https://doi.org/10.1007/BF02185904
  9. Glass N.R. 1967. A Technique for fitting nonlinear models to biological data. Ecology 48:1010-1013 https://doi.org/10.2307/1934554
  10. Grahanm L.E. and Wilcox L.W. 2000. Algae. Prentice-Hall, London, 700 pp
  11. Horn S.J., Aasen I.M. and Ostgaard K. 2000. Ethanol production from seaweed extract. J. ind. Microbiol. Biotechnol. 25:249-254 https://doi.org/10.1038/sj.jim.7000065
  12. Huxley J.S. and Teissier G. 1936. Terminology of relative growth. Nature 137:780-781
  13. Kim J.H. 2002. Mechanisms of competition between canopyforming and turf-forming intertidal algae. Algae 17:33-39 https://doi.org/10.4490/ALGAE.2002.17.1.033
  14. Komiyama A., Ong J.E. and Poungparn S. 2008. Allometry, biomass and productivity of mangrove forests:a review. Aquat. Bot. 89:128-137 https://doi.org/10.1016/j.aquabot.2007.12.006
  15. Kutner M.H., Nachtsheim C.J. and Neter J. 2004. Applied linear regression models. McGraw-Hill Irwin, Boston, 701 pp
  16. Larsson C. and Axelsson L. 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol. 34:79-86 https://doi.org/10.1080/09670269910001736112
  17. Littler M.M. and Littler D.S. 1985. Nondestructive sampling. In: Littler M.M. and Littler D.S. (eds), Handbook of Phycological Methods. Cambrige University Press, Cambridge. pp. 161-175
  18. Maegawa M., Kida W. and Aruga Y. 1988. A demographic study of the sublittoral brown alga Ecklonia cava Kjellman in coastal water of Shima Peninsula, Japan. Jpn. J. Phycol. 36:321-327
  19. Metin G., Ilkyaz A.T. and Kinacigil H.T. 2006. Length-weight relationships of poor cod (Trisopterus minutus Linnaeus, 1758) in the Central Aegean Sea. J. Appl. Ichthyol. 22:288-289 https://doi.org/10.1111/j.1439-0426.2006.00807.x
  20. Nagy K.A. 2005. Field metabolic rate and body size. J. Exp. Biol. 208:1621-1625 https://doi.org/10.1242/jeb.01553
  21. Packard G. and Boardman T. 2008. A comparison of methods for fitting allometric equations to field metabolic rates of animals. J. Comp. Physiol. [B] (in press)
  22. Quinn G.P. and Keough M.J. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, 520 pp
  23. Robbins B.D. and Boese B.L. 2002. Macroalgal volume:a surrogate for biomass in some green algae. Bot. Mar. 45:586-588 https://doi.org/10.1515/BOT.2002.063
  24. Rollon R.N., Samson M.S., Roleda M.Y., Arano K.G., Vergara M.W.B. and Licuanan W.Y. 2003. Estimating biomass from the cover of Gelidiella acerosa along the coasts of eastern Philippines. Bot. Mar. 46:497-502 https://doi.org/10.1515/BOT.2003.051
  25. Scrosati R. 2000. The interspecific biomass-density relationship for terrestrial plants:Where do clonal red seaweeds stand and why? Ecol. Lett. 3:191-197 https://doi.org/10.1046/j.1461-0248.2000.00133.x
  26. Scrosati R. 2006. Length-biomass allometry in primary producers:predominantly bidimensional seaweeds differ from the "universal" interspecific trend defined by microalgae and vascular plants. Can. J. Bot. 84:1159-1166 https://doi.org/10.1139/B06-077
  27. Stern D.L. and Emlen D.J. 1999. The developmental basis for allometry in insects. Development 126:1091-1101
  28. Sutherland I.R. 1998. Kelp inventory, 1996 - Porcher Island, Goschen Island, Banks Island and Estevan Group. In: ICMRaD Ltd. (eds), Province of British Columbia Ministry of Agriculture, Fisheries and Food, Aquaculture and Commercial Fisheries Branch, British Columbia, pp. 1-33
  29. van Tamelen P.G. and Woodby D. 2001. Macrocystis biomass quality and harvesting effects in relation to the herring spawn-on-kelp fishery in Alaska. Alaska Fish. Res. Bull. 8:118-131
  30. Zar J.H. 1968. Calculation and miscalculation of the allometric equation as a model in biological data. Bioscience 18:1118-1120 https://doi.org/10.2307/1294589

Cited by

  1. Technology of Marine Forest Construction in the Southern East Coast and Growth Characteristics of Transplanted Algae vol.24, pp.10, 2015, https://doi.org/10.5322/JESI.2015.24.10.1285
  2. Complete plastid genome of an ecologically important brown alga Sargassum thunbergii (Fucales, Phaeophyceae) vol.28, 2016, https://doi.org/10.1016/j.margen.2016.03.003
  3. Mapping the Spatial Distribution of IRG Growth Based on UAV vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.495
  4. Flora and Community Structure of Subtidal Zone in South Jeju, Korea vol.27, pp.1, 2015, https://doi.org/10.13000/JFMSE.2015.27.1.273