DOI QR코드

DOI QR Code

정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석

Computational analysis of coupled fluid-structure for a rotor blade in hover

  • 김해동 (세종대학교 기계항공우주공학부)
  • 발행 : 2008.12.31

초록

로터 블레이드의 구조변형을 포함한, 제자리 비행하는 로터 블레이드의 공력해석을 수행하였다. 와류포획능력을 향상시킨 전산유체 코드와 간단한 오일러-베르누이 보 모델에 기반을 둔 구조역학 방정식을 결합시켜 회전익 유동에 대한 연계 계산을 수행하였으며 계산결과 타당한 로터블레이드 구조변형 및 공력특성을 얻었다.

numerical study on the coupled fluid-structure for a rotor blade in hover was conducted. Computational fluid dynamics code with enhanced wake-capturing capability is coupled with a simple structural dynamics code based on Euler-Bernoulli's beam equation. The numerical results show a reasonable blade structural deformation and aerodynamic characteristics.

키워드

참고문헌

  1. Burly, C. L. and Tadghighi, H., "Importance of High Accuracy Blade Motion and Airloads Prediction for Aeroacoustic Analysis", AHS 50th Annual Forum May, 1994
  2. Yu, H. Y., "Rotor Blade-Vortex Interaction Noise", Progress in Aerospace Science, Vol. 36, 2000, pp. 97-115
  3. Sivaneri, T. N., "Dynamic Stability of a Rotor Blade using Finite Element Analysis", AIAA Journal, Vol. 20, No. 5, pp. 716-723 https://doi.org/10.2514/3.51129
  4. Sheffer, G. S., et al., "Time Accurate Simulation of a Helicopter Rotor Flows Including Aeroelastic Effects", AIAA Paper 97-0399, 1997
  5. Brentner, K. S. and Farassat, F., "Modeling Aerodynamically Generated Sound of Helicopter Rotors", Progress in Aerospace Science, Vol. 39, 2003, pp. 83-120
  6. Bauchau, O. A. and Ahmad, J. U., "Advanced CFD and CSD Methods for Multidisciplinary Applications of Rotorcraft Problems", AIAA 6th Symposium on Multidisciplinary Analysis and Optimization, Seattle, WA, Sept. 1996
  7. Datta, A. and Chopra, I., "Validation of Structural and Aerodynamics Modeling using UH-60A Flight Data", Journal of the American Helicopter Society, Vol. 51, No. 1, 2006, pp. 43-58 https://doi.org/10.4050/1.3092877
  8. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes", Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  9. Sweby, P. K., "High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws", SIAM Journal on Numerical Analysis, Vol. 21, No. 5, 1984, pp. 995-1011 https://doi.org/10.1137/0721062
  10. Yamamoto, S., and Daiguji, S., "Higher-Order Accurate Upwind Schemes for Solving the Compressible Euler and Navier Stokes Equations", Computers and Fluids, Vol. 22, 1993, pp. 259-270 https://doi.org/10.1016/0045-7930(93)90058-H
  11. Kim, H., Williams, M. H., and Lyrintzis, A. S., "Improved Method for Rotor Wake Capturing", Journal of Aircraft, Vol. 39, No. 5, pp. 794-803, 2002 https://doi.org/10.2514/2.3025
  12. Sharpe, D. L., "An Experimental Investigation of the Flap-Lag_Torsion Aeroelastic Stability of a Small-Scale Hingeless rotor in Hover", NASA TP-2546, January, 1986
  13. Srinivasan, G. R., Baeder, J. D., Obayashi, S., and McCrosky, W. J., "Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation", AIAA Journal, Vol. 30, No. 10, 1992, pp. 2371-2378 https://doi.org/10.2514/3.11236
  14. Smith, M., J., "A Fourth Order Euler/Navier-Stokes Prediction Method for the Aerodynamics and Aeroelasticity of Hovering Rotor Blades", Ph. D. Dissertation, Georgia Institute Technology, 1994
  15. Hodges, D., H., "Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch-Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset and Blade Root Offset", NASA TM X-73112, May 1976