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Abstract

The similarity measure is constructed for non-convex fuzzy membership function using well known Hamming distance
measure. Comparison with convex fuzzy membership function is carried out, furthermore characteristic analysis for
non-convex function are also illustrated. Proposed similarity measure is proved and the usefulness is verified through
example. In example, usefulness of proposed similarity is pointed out.

Key Words: Fuzzy entropy, Similarity measure, Distance measure, Non—convex fuzzy set

1. Introduction

Research on the similarity measure between fuzzy sets
has been applied to the pattern classification or many
other fields. Similarity measure represents the degree of
similarity between two or more informations. It also has
been noticed as the complementary meaning of the dis-
tance measure, i.e, s +d =1, where d and s are distance
and similarity measure respectively. Until now the re—
search of designing similarity measure has been made by
numerous researchers [1-8]. For fuzzy set, there is an
uncertainty knowledge in fuzzy set itself [9]. Fuzzy set
uncertainty has been studied through analyzing and de-
signing fuzzy entropy. Besides fuzzy entropy, similarity
also represent the relatedness of two fuzzy set. Hence
information of the data can be obtained from analyzing
the fuzzy membership function. Thus most studies about
similarity measure have been emphasized based on
membership function.

In the previous results, similarity measures are ob-
tained through fuzzy number{10-13]. Fuzzy number pro-
vide similarity measure easily. However considering
similarity measures are restricted within triangular or
trapezoidal membership functions[10-13]. In this paper
we design similarity measure for general fuzzy member—
ship which is based on distance measure. W also verify
the usefulness of similarity via proving it. However two
kinds of similarity measure that were mentioned before
are all applied to convex fuzzy membership function.
Here we have question about non-convex fuzzy mem-
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bership functions. To apply similarity measure to
non-convex fuzzy membership function, we analyze the
similarity characteristics for fuzzy sets.

In the next chapter, the axiomatic definitions of en-
tropy, distance measure and similarity measure of fuzzy
sets are introduced and fuzzy entropy is constructed
through distance measure. In Chapter 3, similarity meas—
ures are constructed and proved through the distance
measure. Similarity application to non-convex fuzzy set
is proposed by considering support average. In Chapter
4, definition and application of non-convex fuzzy set is
illustrated, and another similarity is proposed and
verified. Conclusions are followed in Chapter 5.

Notations: Through out this paper, B = [0, ), F(X),
and P(X) represent the set of all fuzzy sets and crisp
sets on the universal set X respectively. uy(x) is the
membership function of A € F(X), and the fuzzy set A4,
we use A¢ to express the complement of A, ie.
pac(x)=1—py(z), Vo € X, For fuzzy sets A and B,
AUB, the union of A and B is defined as
pays(c) =mazx(us(z),pp(z)), ANDB, the intersection
of A and B is defined as psng(z) =min(u (z),pus(z)).
A fuzzy set A" is called a sharpening of A4, if
pa (@) = palz) when palz) = 1/2
pylx) < py(z) when py(x) <1/2. For any crisp sets
D, A, and Ag, of fuzzy set A are defined as
ta,, (r)=1 and O pa(z) =12
pa(x) <1/2, respectively. Furthermore 4, (z) =0 and
1 when pylz) =21/2 and py(z) <12,

and

when and
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2. Preliminaries

We introduce some preliminary results about axio—
matic definitions of distance measure and similarity
measure. As the meaning of fuzziness, fuzzy entropy are
introduced. By analyzing the fuzzy membership function
pairs, we have investigated the similarity measure via
fuzzy membership functions. It is also mentioned that
common areas represent similarity measure.

Definition 2.1 [4] A real function d: F>—R™ is called a
distance measure on F(X), if d satisfies the following
properties:

(D1) d(A,B) = d(B,A),V A, B € F(X)

(D2) d(4,4)=0, VA € F(X)

(D3) d(D,D¢) =maz 4 pe r d(4,B), VD € P(X)

(DY) VA,B,C € F(X), if ACBCC, then

d(A,B) < d(A4,C) and d(B,C) < d(4, C).

Fuzzy normal entropy on F is obtained by the division
of maxgpe ps{C, D). Liu also pointed out that there is
an one-to-one relation between all distance measures
and all similarity measures, d+s=1. In this paper,
among distance measures, Hamming distance is com-
monly used as distance measure between fuzzy sets A
and B,

A4, ) = =3 ua (22) = (e,

where X= {z,, 29, - 2,}, | k| is the absolute value of
k.

With this Hamming distance measure we had pro-
posed fuzzy entropy induced by distance measure which
is different from Theorem 3.1 of Fan, Ma and Xie [7].

Fuzzy entropy 1. If (distance d  satisfies

d(A4,B) =d(A° BY), A,B € F(X), then
e(A4) =2d((ANA,.,. ), [1]) +2d((4U A4, ),[0]) — 2

is fuzzy entropy.

Proposed entropy needs only A4,

has the advantage in computation of entropy.
Furthermore we considered another entropy, which con-
siders only Ay,,, and it has more compact form than an-

crisp set, and it

ear

other one.

Fuzzy  entropy 2 I distance d satisfies

d(A,B) =d{A% B°), A,B € F(X), then
G(A) = 2d((AnAfar); [O]) + 2d((AUAfar)J [1])

is also fuzzy entropy.

Proofs of Fuzzy entropy 1 and 2 are found in [9].
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Proposed entropies have some advantages to the Liu’s,
they don’t need extra assumptions of Liu. Furthermore
they use only one crisp sets 4,,,, and A, respectively.

For the similarity analysis we introduce definition of
similarity measure, and concept based on fuzzy member-
ship functions.

Definition 2.2 [4] A real function s: F2>R™ is called a
similarity measure, if s has the following properties:
(S1) s(A,B) =s(B,A),YA,B € F(X)
(S2) s(4,4°)=0, VA € F(X)
(S3) s(D,D) =max, pe rs(A,B), VAB € F(X)
(S4) VA,B,Ce F(X), if AcBcC, then
s(4,B) = s(A,C) and s(B,C) = s(4,0C).

Fuzzy normal similarity measure on F is also ob-
tained by the division of maxgpe rs(C D). With the
definition of similarity measure we derive the similarity
between fuzzy sets. Consider the two gaussian type
membership functions as in Fig. 1.

e < RO

Fig.1 Gaussian type two membership functions

From Fig. 1, we conjecture that the shaded area can
be considered as the component of similarity measure. At
first we conjecture that the area C only be the similarity
between two membership functions. However area D is
also common area between two membership function. By
proposing those areas as equations, next two equations

1-d{((ANB),[1]) and 1 -d((4UB),[0])

will be denoted as C and D. Part C is common area of

membership function, whereas D also represents the
common information of the two membership functions.
As the area C goes to 1, area D satisfies 0. If D sat-
isfies 1, then two membership functions are the exact
same membership function. Hence proper similarity
measure is obtained by combining two values.

Those common areas are constructed via distance
measure. In the following chapter we derived similarity
measure and proved. In this paper we do not consider
similarity measure using fuzzy number. Similarity meas-
ures based on fuzzy number are found in references
[10-13].

3. Similarity measure derivation

We have described that the common areas of two fuz—
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zy membership functions satisfy similarity between two
fuzzy membership functions. By the Fig. 1, it is obvious
summarizing two common areas mean similarity measure
for corresponding two fuzzy membership functions.
Area C represents 1 —d{((AN B),[1]), and D also sat-

isfies 1 ~d((AU B),[0]). Hence similarity for two fuzzy
set A and B is obtained as follows.

s(4,B) =2—d((4NB),[1]) - d((4UB),[0])

With the following theorem we represent similarity
measure using distance measure.

Theorem 3.1 For fuzzy set 4 € F(X), if d satisfies
distance measure, then

s(4, B) = 2—d((4ANB),[L]) —d((AUB),[0]) (D

is the similarity measure between fuzzy set 4 and B.

proof We verify that (1) satisfies similarity measure
with proving the similarity definition. (S1) means the
commutativity of set 4 and B, hence it is clear from (1)

itself. From (S2), s(4,4°) =0 is shown by

s(A4,A4°) =2—d((4ANA4°),[1]) —d((AUA4°),[0])

—2—d(ol1]) ~d(1), )

For all 4, B € F(X), inequality of (S3) is proved
through

s(4,B) =2—-d((ANB),[1]) —d((AUB),[0])
<2-d((DND),[1) —d(DUD),[0])
= s(D,D).

In the above, inequality is
d((AnB),[1]) z d((DND),[1])
d((AUB),[0]) = d((DUD),[0]).

satisfied  from
and

Finally, (S4) is satisfied from V A4,B,C € F(X),
AcCBc C,

s(A4,B)=2—-d((ANB),[1]) —d((AUB),[0])
=2-d(4,1]) —d(B,[0])
=z 2—-d(4,[1])—d(C,[0])
=s5(A,0C)

also

s(B,C)=2—-d((BNC),[1])—d((BUC),[0])
=2-d(B1])-d(C 0]
=2 2-d(4,[1]) —d(C,[0])
=s5(4,0).

In the above inequality is also satisfied with

d(B,[0)) < d(C,[0]) and d(B,[1]) < d(4,[1]).
Therefore proposed similarity measure (1) satisfy

Definition 2.2. Similarly, we propose another similarity
measure in the following theorem.

Theorem 3.2 For fuzzy set A € F(X) and distance
measure d,

s{4,B) =1-d((4NB),[0]) —d((AUB),1]) (2

is the similarity measure of fuzzy set A and B.
progf. Proofs are shown similarly as Theorem 3.1.

We have proposed the similarity measure that are in—
duced from distance measure. By analyzing the similarity
(1) and (2), similarity is proportional to the common area
of two membership functions. Summation of areas C and
D represent similarity. At this point we have a question
how about non-convex membership functions are ? For
the same area of between convex to convex and convex
to non-convex, which pair has better similarity ? Even
though two pairs have same similarity measure, their
geometrical description may not be identical. Hence an-
other measure is required to discriminate two pairs. Now
we introduce non-convexity in next chapter and propose
another measure for similarity.

4. Non-convex fuzzy membership function

First we introduce non-convex fuzzy membership
function. Definition of non—convex fuzzy membership
function can be found in reference [14]. Non-convex fuz-
zy sets are not common fuzzy membership function.
Definition of non—convexity derived from convexity
definitely.

Definition 4.1 [14] A fuzzy set A is convex if and only
if for any z,, ,€ X and any A € [0,1],

paAzy + (1= XN)zy) = min{ps(x1), palzz)}  (3)

Non-convexity fuzzy set is said if it is not convex.
Non-convex membership functions can be notified natu—
rally 3 sub classes {15].

- Elementary non-convex membership functions
- Time related non-convex membership functions
- Consequent non-convex membership functions

First, a discrete fuzzy set express elementary
non-convex fuzzy membership functions. However con-—
tinuous domain non-convex fuzzy set may be less
common.

Next, time related non—convex membership functions
can be found in energy supply by time of day or year,
mealtime by time of day. This fuzzy set is interesting as
it is also sub-normal and never has a membership of
ZEr0.

Finally, Mamdani fuzzy inferencing is a typical exam-
ple of consequent non-convex sets. In a rule based fuzzy
system the result of Mamdani fuzzy inferencing is a
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non-convex fuzzy set where the antecedent and con-
sequent fuzzy sets are triangular and/or trapezoidal.

Jang et.al insisted that the definition of convexity of a
fuzzy set is not as strict as the common definition of
onvexity of a function [14]. Then the definition of con—
vexity of a function is

FOzi+ (1 =Nzg) = M(z) + (1 —-A)f(z2), (@)
which is a tighter condition than (3).
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(a) Two Convex Fuzzy Sets (b) A Nonconvex Fuzzy Set

Fig.2 Convex MF and Non-convex MF

Fig. 2 (a) show two convex fuzzy sets, the left fuzzy
set satisfies both (3) and (4) while the right one satisfies
(3) only. Whereas Fig. 2 (b) is a con-convex fuzzy set.

To obtain another measure discriminating two same
similarity measure with (1) and (2), we have to consider
another point of view. Commonly, different fuzzy mem-
bership function pair has different mean values of uni—
verse of discourse. Therefore we use "support” as meas—
ure for similarity to obtain implicit result.

1 n
support,(z;) = E—EI@I, z, €A
=1

Support between set A4 and B is represented as
follows.

1y 1 ¢
support(A,B) = | EZ'UCAA—EEI zgll,
=1 =
T 4 S A,Z'Bj e B

Now we consider another similarity between set A
and B is

52(4,B) = L G

support(4,B) + 1"

Proofs of (5) can be obtain easily as follows. For (S1)
it is natural from (5) itself. (S2) means similarity be-
tween fuzzy set and its complement satisfieg minimum
value. Hence the farther mean of universe of discourse,
the bigger support (A, B) become. If two fuzzy sets are
the same, then support(A,B) satisfies zero. Therefore
(83) is obtained easily. Finally, (S4) is also obtained
easily from (S2) and (S3).

With the similarity properties of s;(4,5)
$5(4, B), next we combine similarity measure as follows

and

S(A;B) =w131(A}B)+w232(A;B). (6)
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Where similarity measure (1) and (2) are replaced into
s1(A,B), w,,w, are weighting factors.

Now we consider the membership functions type 1
and 2 in Fig. 3 and 4. In the following figures, area be-
tween py and pp are the same. Hence the similarity
measure between (4 and pp are same. As a result, two
s,(A, B) has the same value. With the similarity meas-
ure s;(A4,B) two fuzzy set pairs are exactly same
similar. Now which case is more similar ?

Mgy

Fig.3 Membership functions type 1

1
g
1
0— L5

X

Fig.4 Membership functions type 2

In the above case, the first part of (6) is the similarity
measure based on distance measure, hence the value of
Fig. 3 and Fig. 4 are the same. However the 2nd part of
(6) represents the difference of average support. We
have already verified similarity property of s;(A4,B) and
sy(A,B) separately. Determination of s,(4,B) is de-
pendent on designer’s point of view.

There are a lot of similarity measures besides of sim-
ilarity measure s;(4,B). One of examples has the fol-

lowing formulation
32(A;B) = |max {MA (wz)} —mar {MB(%‘)H.

Hence we can alter s,{(A,B) with respect to each

cases.

5. Conclusions

We introduce the distance measure and similarity
measure, similarity measure can be represented by the
function of distance measure. By the one to one corre-
spondence of distance measure and similarity measure,
we construct the similarity measure using distance
measure. With the proposed similarity measure we ana-—
lyze the similarity between fuzzy membership function
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pair, especially non-convex fuzzy membership function.
Furthermore modified similarity measure is constructed
through "support” characteristic. We verify that the pro-
posed measure is also satisfied as the similarity measure.
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