SRS LSS =FX| 2008, Vol. 18, No. 1, pp. 127-132

A Natural Language Query Framework for the Semantic Web
Jin Sung Kim

School of Business Administration, Jeonju University
1200 Hyoja-Dong 3Ga, Wansan-Ku, Jeonju, Jeonbuk 560-759, Korea

Abstract

This study proposes a Natural Language Query Framework (NLQF) for the semantic web. It supports an intelligent inference at a semantic
level. Most of previous researches focused on the knowledge representation on the semantic web. However, to revitalize the intelligent e-
business on the semantic web, there is a need for semantic level inference to the web information. To satisfy the need, we will review the
knowledge/resource representation on the semantic web such as RDF, Ontology and Conceptual Graph (CG), and then discuss about the
natural language (NL) inference. The result of this research could support a natural interface for the semantic web. Furthermore, we expect

that the NLQF can be used in the semantic web-based business communications.

Keywords: Conceptual graph, Intelligent agent, Natural language, Ontology, RDF, Semantic web

1. Introduction

The web-based knowledge representation and gathering is
increasingly moving to the semantic web. According to the
improvement of the technology in knowledge description on the
semantic web, a great number of web information resources are
also available. During the development of web-based intelligent
knowledge gathering, the most important work is a description
of the information resources [3]. Where the information is
annotated with concepts from sharing ontology, thus the
semantics of web information can be understood and consumed
by agents [1]. The agents include the human agents and
intelligent agents (IAs). To help them effective annotation
mechanisms were developed by previous researchers. Among
them, RDF and OWL-related languages are well known to
semantic web developers. However, most of previous researches
still have focused on how to annotate the HTML information
efficiently.

In contrast with these improvements, there were few
researches in semantic web-based knowledge inference. First of
all, to infer the knowledge on the semantic web, it is need to
construct and translate a RDF or OWL web document. To
construct a RDF or OWL-oriented web document, an ontology
and schema should be ready to describe the web resources
explicitly. Where the use of a sharable ontology and schema for
the explication of implicit knowledge is a possible approach to
overcome the limitations came out from semantic heterogeneity.
Therefore, with respect to the description of information
resources on the semantic web, they can be used for the

He+YUxt s 2007 4@ 25¢
2EYUX 2007 128 10

identification and association of semantically corresponding
information concepts [2]. However, a barrier still remain which
protect the intelligent inference on the semantic web.

To overcome the limitations, in this study, we introduce the
RDF, OWL, NL-oriented knowledge transformation, and a
semantic web-based NL inference framework. The rest of the
paper is organized as follows. Section 2 reviews the related
works on RDF, Ontology, CG, and OWL. In Section 3, we
propose a NLQF. The concluding remarks are presented in
Section 4.

2. Research Background

There are several approaches to explain the semantics on the
web such as Ontology, DTD, RDF, XML Schema, and etc. To
clarify the purpose of this study, only the RDF, Ontology, CG,
and OWL will be introduced.

2.1. RDF

RDF developed by W3C organizes information in a
Resource-Property-Value (RPV) or Subject-Verb-Object (SVO)
triples form, thus the RDF files can be processed semantically
on the semantic web [1, 4].

® A Resource is an entity accessible by an URI on the Semantic
Web (e.g. an XML document). So the Resources are the
elements described by RDF statements.

® A Property defines a binary relation between resources and/or
its atomic values. A property enables us to attach detailed
information to resources, and provide descriptions for

resources.

127

Sr=RISAIA-SE =FX| 2008, Vol. 18, No. 1

® A Value can be either a character string or a resource.
Reification of resources using property and values enables us
to transform the tripe into a resource.

RDF is a general purpose knowledge representation
framework and RDF-Schema (RDFS) is the RDF vocabulary
description language to be used to provide a further description
mechanism to define classes or groups of related resources and
the relationships between the resources [3]. Some primitives are
defined in RDFS and there are several successors of RDFS such
as Simple HTML Ontology Extensions (SHOE), DARPA Agent
Markup Language (DAML), DAML-ONT, Ontology Inference
Layer (OIL), DAML+OIL, and OWL. The OWL has three
increasingly-expressive sublanguages OWL Lite, OWL
Description Logic (DL) and OWL Full [8]. The RDF structure is
embedded in these languages [1]. Therefore, most of semantic
web applications are focused on the RDF and RDFS-oriented
annotations.

2.2. Ontology

As one of researches on the semantic web ontology, Li &
Liang’s (2006) ontology hierarchy will be introduced in this
section. The contribution of their research is that a genetic
model for organizing several ontologies. The proposed genetic
model could organize several different ontologies on the
semantic web. Especially, the genetic model has four operators
Inheritance, Block, Atavism and Mutation. Each one of
ontologies, in Figure 1, could reuse the primitives of ontology
languages e.g. RDF, RDFS and OWL based on the Inheritance
operator. And lower level ontology reuse the concepts of higher
level ontologies. For example, Employee Ontology inherits
Person Ontology directly. ~However, the concept
home phone of Person Ontology is blocked by Employee
Ontology since the home phone of an employee should not be
public. The concept contact number of Employee Ontology
(refers to office_phone) is a mutation of the contact number in

Person Ontology (refers to home_phone).

23.CG

CG is a method of knowledge representation developed by
Sowa [5] based on Charles Peirce’s Existential Graphs and
Semantic Networks of AI [7}. CG has a direct mapping to and
from NL and a graphic notation designed for human readability.
Therefore, CG could express the meanings in a form that is
logically precise, humanly readable, and computationally
tractable. Many popular graphic notations and structures ranging
from type hierarchies to entity-relationship or state transition
diagrams can be viewed as special cases of CGs [7].

128

Inheritance

Inheritance

Course
Ontology

home_
phone

contact_
number

Employee
Ontology

Block-~" utagigh

Student-

per: home_ || per: contact_| | office_ Employee- oy
phone number || phone WorkingHome Ontology
Ontology /-"é/ock
Atal//i/ﬁf lemp: contact | ,,,
number
per: home_ |, .,
phone

Figure 1 Ontology hierarchy (Li & Ling, 2005)

On the CG, the knowledge is divided into two parts
Terminological Knowledge and Assertional Knowledge. Fist, the
Terminological Knowledge (Support) which contains the
‘ground’ vocabulary and the Assertional Knowledge which
consist of a set of CGs built by means of the Terminological
Knowledge [6]. The Support provides the ground vocabulary
used to build the domain knowledge base: the type of Concepts
used, the Instances of these types, and the types of Relations
(Conceptual Relationships) linking the concepts. The concepts
can be linked by means of relations and the support contains the
set of Conceptual Relation Types. Kayed & Colomb (2005) used
CG formalism to build up some ontologies. They explained that
the using CGs facilitates deploying XMLs capabilities and
advantages by two ways [7]:

® By embedding CGs in Web-XML documents to represent
knowledge.

® By building a browser-based XML like language that can
communicate with a collection of ontological components that
use Conceptual Graph Interchange Format (CGIF) as their
native language.

It means that the CG and CGIF could represent a logical
knowledge and their relationship on the semantic web. Then the
knowledge could be delivered to the remote knowledge user
whom he need that knowledge since the CG and CGIF could
support the communication with ontological components.
Therefore, it could be used in the retrieving, delivering and
inference of knowledge on the semantic web.

24.0WL

A set of XML statements by itself does not allow the web
users to reach a certain conclusion about any other XML
statements. In order to employ XML to generate the conclusions,
we need a knowledge embedded in some procedural code [8]. In
this case, a set of OWL statements by itself can allow us to
reach a conclusion about another OWL statement [8]. OWL
facilitates greater machine readability of web content than that
supported by XML, RDF, and RDFS by providing additional
vocabulary along with a formal semantics. An OWL statement
looks very much like XML and RDF documents in terms of
elements, tags, and namespaces. OWL statement starts with a
header and then defines properties and classes. The first part of
OWL statement is the outer OWL block, delimited by
owl:Ontology containing version information owl:versionlnfo,

and an import section owl:imporis. Table 1 shows an example
OWL header.

Table 1 An Example of OWL header

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:owl = "http://www.w3.0rg/2002/07/owl#"
xmlns:rdf = "“http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#"
xmlns:rdfs =" http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:de="http://purl.org/dc/elements/1.1/"
xmlns:xsd = "http://www.w3.0rg/2000/1/XMLSchema#">
<owl:Ontology rdf:about =" ">
<owl:versionInfo>1.0 </owl:versionInfo>
<dc:title>e-Book:
Ontology</dc:title>
<dc:author>Jin S. Kim</dc:author>
<dc:date>Sep. 19 2007</dc:date>
</owl:Ontology>
</rdf:RDF>

Introducing ~ Semantic =~ Web

The namespaces shown above are similar with standards as
well as the outer 1df:RDF opening and elements. However, a
schema for the existing RDF vocabulary was not defined. Rather
the RDF and XML were used and new ontology was constructed.
Where the Dublin Core element <dc> was designed to document
metadata about published resources. Then <dc> elements were
included in the header of OWL document to define title, author,
date, and other information since the ontology was a published
resource [8].

>

A Natural Language Query Framework for the Semantic Web

3. Research Methodology

The proposed NLQF is consists of two phases Knowledge
Extraction and Knowledge Inference. Figure 2 shows the whole
structure of the NLQF. Where, Schema and Ontology are used
to explicit the knowledge and mapping with other knowledge
represented on the semantic web. The NL-KB is used to store
and retrieve the knowledge extracted from the semantic web.

Knowledge Extraction

Documents

NL-IE: NL Inference Engine
NL-KB: NL Knowledge Base

Figure 2 The NLQF

Knowledge Inference

:E—NL-Query

3.1. Knowledge Extraction

Web information represented by OWL contains several kind
of knowledge. Traditional XML Schema, XML and RDFS
messages focused on the specific data but it is a knowledge
representation rather than a message format. First, in the NLQF
procedure, the OWL-based web documents (information) are
translated into the CG. After the translation, the knowledge and
their relationships stored in CG should be transformed as a form
of knowledge which could be used in NL inference. The NL-KB
has the knowledge. For example PROLOG+CG Artificial
Intelligence (AI) language can be adapted directly to that
procedure. Table 2 shows the OWL sentences on the web.

Table 2 OWL ontology for wine

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdfiresource="http://www.w3.0rg/TR/2003/CR-
owl-guide-20030818/food#PotableLiquid" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:cardinality
rdf:datatype="http://www.w3.0org/2001/XMLSchema#nonNegativelnte
ger'>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />
</owl:Restriction>
</rdfs:subClassOf>

<owl:ObjectProperty rdf:ID="hasColor">

129

SRXISAIA-SE] =&A] 2008, Vol. 18, No. 1

<rdf:type
rdf:resource="http://www.w?3.0rg/2002/07/owl#FunctionalProperty" />
<rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
<rdfs:domain rdf:resource="#Wine" />
<rdfs:range rdf:resource="#WineColor" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMaker">
<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#FunctionalProperty" />
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="producesWine">
<owl:inverseOf rdf:resource="#hasMaker" />

</owl:ObjectProperty>

<owl:Class rdf:ID="WhiteLoire">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Loire" />
<owl:Class rdf:about="#WhiteWine" />
</owl:intersectionOf>
<fowl:Class>
<owl:Class rdf:about="#WhiteLoire">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape" />
<owl:allValuesFrom>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#CheninBlancGrape" />
<owl:Thing rdf:about="#PinotBlancGrape" />
<owl:Thing rdf:about="#SauvignonBlancGrape" />
</owl:oneOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="WhiteBurgundy">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Burgundy" />
<owl:Class rdf:about="#WhiteWine" />
</owl:intersectionOf>
</owl:Class>
<owl:Class rdf:about="#WhiteBurgundy">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape" />
<owl:hasValue rdf:resource="#ChardonnayGrape" />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#madeFromGrape" />

<owl:maxCardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#nonNegativelnte
ger">1</owl:maxCardinality>

</owl:Restriction™>

</rdfs:subClassOf>

</owl:Class>

The above web ontology is transformed into a form of CG. In
this study we used the PROLOG+CG tools to manage the CG
and NL inference. Table 3 shows the example of CG
transformed.

Table 3 The example of transformed web ontology

Universal > Wine, hasBody, hasColor, hasFlavor, hasMaker, hasSugar,
Property.

Attribute > WineBody, WineColor, WineFlavor, Winery, WineSugar.
hasBody > WineBody.

hasColor > WineColor.

hasFlavor > WineFlavor.

hasMaker > Winery.

hasSugar > WineSugar.

Wine > WhiteWine, RedWine, TableWine.
TableWine > WhiteTableWine, RedTableWine.
WhiteWine > WhiteLoire,
SauvignonBlanc.

RedWine > RedBurgundy, RedBordeaux.

WhiteBurgundy, ~WhiteBordeaux,

WhiteBurgundy = CortonMontrachetWhiteBurgundy,
PulignyMontrachetWhiteBurgundy.
SauvignonBlanc = CorbansSauvignonBlanc,

CorbansPrivateBinSauvignonBlanc.

RedTableWine = MariettaOldVinesRed, MariettaPetiteSyrah,
MariettaZinfandel.

WineBody = Light, Medium, Full.

WineColor = White, Rose, Red.

WineFlavor = Delicate, Moderate, Strong.

Winery = Bancroft, Beringer, ChateauChevalBlanc, ChateauDYchem,
ChateauDeMeursault.

WineSugar = Sweet, OffDry, Dry.

[WhiteWine : x]<-MEMB-[hasBody : Light] :-

[Wine : x]<-AGNT-[Property]-hasBody->[WineBody: Light].
[WhiteWine : x]<-MEMB-[hasBody : Medium] :-

[Wine : x]<-AGNT-[Property]-hasBody->[WineBody: Medium].
[WhiteWine : x]<-MEMB-[hasBody : Full] :-

[Wine : x]<-AGNT-[Property]-hasBody->[WineBody: Full].

130

A Natural Language Query Framework for the Semantic Web

[WhiteWine : x]<-MEMB-[hasFlavor : Strong] :-
[Wine : x]<-AGNT-[Property]-hasFlavor->{WineFlavor: Strong].

[RedWine : x]<-MEMB-[hasBody : Light] :-

[Wine : x]<-AGNT-[Property]-hasBody->[WineBody: Light].
[RedWine : x]<-MEMB-[hasBody : Medium] :-

[Wine : X]<-AGNT-[Property]-hasBody->[WineBody: Mediumj.
[RedWine : x]<-MEMB-[hasBody : Full] :-

[Wine : x]<-AGNT-[Property]-hasBody->[WineBody: Full].

[Wine : x] -
- hasBody->{WineBody),
- hasColor->[WineColor],
- hasFlavor->[WineFlavor],
- hasMaker->[Winery],
- hasSugar->[WineSugar].

[Wine: CortonMontrachetWhiteBurgundy]<-AGNT-[Property]-
hasBody->[WineBody: Light].

[Wine: PulignyMontrachetWhiteBurgundy]<-AGNT-[Property]-
hasBody->[WineBody: Medium].

[Wine: CorbansPrivateBinSauvignonBlanc]<-AGNT-[Property]-
hasFlavor->[WineFlavor: Strong].

[Wiae: CortonMontrachetWhiteBurgundy]<-AGNT-[Property]-
hasFlavor->[WineFlavor: Strong].

?- [WhiteWine: x]<-MEMB-[hasFlavor: Strong].

{x = CorbansPrivateBinSauvignonBlanc}

{x = CortonMontrachetWhiteBurgundy}

Answer Description: The names of “White Wine” which have ‘Strong’
Havor are ‘CorbansPrivateBinSauvignonBlanc’ and

‘CortonMontrachetWhiteBurgundy'

3.2. Knowledge Inference

NL was used as an efficient tool to manage the complicate
human knowledge manipulation and inference. At the same
purpose, semantic network was also used to represent the expert
knowledge and their relationships logically. Therefore, we can

adapt the NL inference if we could extract and transform the-

knowledge stored on semantic web into a NL-KB form. The
revised versions of NL tools which have a NL-IE are applicable
to this procedure. Then the results inferred by NL-IE should be
represented as a human readable format on the semantic web.
Furthermore, the agents on the semantic web will comprehend
the information and can react to that. In this procedure, the
knowledge interpreted by NL-IE is compared with the user’s
input NL Query. The capability of knowledge inference is rely
on the NL-IE. Table 4 shows the NL queries and their inference
results.

Table 4 The NL queries and their inference result

Query Description:
Show me the “White Wines (WhiteWine: x)” which have ‘Strong’ flavor
(hasFlavor: Strong).

4. Concluding Remarks

As a natural inference mechanism using on the semantic web,
in this study, we proposed a NLQF. The proposed NLQF is
consists of two phases Knowledge Extraction and Knowledge
Inference to extract and infer the knowledge stored in OWL
document. To infer the knowledge on the semantic web, schema
and ontology are adapted firstly. Then the extracted knowledge
is transformed into CGs which can manipulate expert
knowledge and their conceptual relationships. The knowledge
represented by CGs is stored in NL-KB as a form of NL. Then
the NL-KB was used to answer for the user’s request composed
by NL query. The important contributions of this study could be
summarized as follows.

® First, the NLQF support a knowledge extraction from the
semantic web documents.

® Second, inference and OWL
documents could support a natural inference on the semantic

the combination of NL
web.

However, the implementation process showed a simple
prototype for NLQF. Therefore, it has many limitations to adapt
it to the real-world problem. To cover the limitations, in the
further research, the detailed and efficient inference procedures
should be developed.

References

[11 C. Li and T. W. Ling, From XML to Semantic
Web, Database Systems for Advanced Applications, Berlin:
Springer, The 10th International Conference on Database
Systems for Advanced Applications (DASFAA 2005),
LNCS 3453, pp. 582-587, Beijing, China, 17-20 April 2005.

[2] J. Gu, B. Hu, and Y. Zhou, Semantic Query Planning
Mechanism on XML Based Web Information Systems, The
7th International Conference on Web Information Systems
Engineering (WISE 2006), LNCS 4256, pp. 194-205,
Wubhan, China, 2006.

[3] H. Yao and L. Etzkorn, L., Automated conversion between

131

S=RISAILE S =FA] 2008, Vol. 18, No. 1

(4]

(5]

(6]

7

(8]

different knowledge representation formats, Krowledge-
Based Systems, 19, pp. 404-412, 2006.

O. Corby, R. Dieng, and C. Hébert, A conceptual graph
model for W3C resource description framework,
Proceedings of the 8" International Conference on
Conceptual Structures (ICCS “2000), Berlin, August 2000.
J.F. Sowa, Conceptual structures: Information processing
in minds and machines, Addison-Wesley, Reading, MA,
1984.

J. Dibie-Barthélemy, O. Haemmerlé, and E. Salvat, A
semantic validation of conceptual graphs, Knowledge-Based
Systems, 19, pp. 489-510, 2006.

A. Kayed and RM. Colomb, Using BWW model to
evaluate building ontologies in CGs formalism, /nformation
Systems, 30, pp. 379-398, 2005.

H. Peter Alesso and Craig F. Smith, Developing Semantic
Web Services, AK Peters Ltd., Natick, Massachusetts, 2005.

132

x X A N

L&A {Kim, Jin Sung)

AN (&ER)< dA, dFdgn
AR sz AF Folt Fo
WAool w02 AFAF 7IH
S o] &3 ATHIAAFA LR Al
g 9 AMujx Foltt

TEL 1 063-220—-2932
FAX 1 063-220—-2787
E—mail : kimjs@jj.ac.kr

