International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 1, March 2008 pp. 52—60

Modified Version of SVM for Text Categorization

Taeho Jo

School of Computer and Information Engineering
Inha University
tjo018@naver.com

Abstract

This research proposes a new strategy where documents are encoded into string vectors for text categorization and modified versions of
SVM to be adaptable to string vectors. Traditionally, when the traditional version of SVM is used for pattern classification, raw data should
be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For

cxample, in text categorization, encoding full texts given as raw data into numerical vectors leads to two main problems: huge
dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and apply the modified version of SVM

adaptable to string vectors for text categorization.

Key Words : String Vector, Text Categorization, Support Vector Machine

1. Introduction

Text categorization refers to the process of assigning one or
some of predefined categories to each document. Before doing
the task, a fixed number of categories should be defined. The
task is necessary for arranging documents based on their
contents automatically for administrating textual information
systems. Techniques of automatic text categorization have their
high demand for both academic and industrial world for
managing documents easily and efficiently. The scope of this
research is restricted to automatic text categorization and
electronic documents given as target for the task.

In 2002, Sebastiani stated that there are two classes of
approaches to text categorization in his survey paper [10]. The
first class of approaches is rule based ones given as heuristic
ones. In this class of approaches, classification rules are defined
manually in each category, in advance. This class of approaches
was already applied to early text categorization systems [3].
However, this class of approaches requires prior knowledge to
build classification rules; they have very good precision but poor
recall with a lack of its flexibility.

Machine learning based approaches belong to the second
class of ones to text categorization. In this class of approaches,
classification rules or equations are defined automatically using
sample labeled documents. In the previous class, classification
rules are given manually as the input while in this class sample
labeled documents are given as the input. This class of
approaches has its better flexibility than rule based ones; it has
slightly less precision but its much higher recall than rule based

Manuscript received Nov. 21, 2007; revised Mar. 10, 2008.

52

ones. Therefore, in recent text categorization systems, rule based
approaches tend to be replaced by machine learning based ones
[10].

It is required to represent documents into numerical vectors
for using machine learning based approaches for text
categorization. The representation leads to two main problems:
huge dimensionality and sparse distribution. The dimension of
numerical vectors representing documents is usually several
hundreds, in spite of feature selection. When training examples
are given as largely dimensional numerical vectors, it costs very
much time for processing them, and a large number of training
build

proportionally to the dimension. An excessive reduction of

examples is required to sufficient constraints
dimension leads to the information loss by which classification
performance is degraded very much.

The

numerical vectors is sparse distribution. It refers to the

second problem in representing documents into
phenomena where each numerical vector has dominantly zero
values as its elements. This problem indicates a poor
discrimination among numerical vectors. It degrades
classification performance very much. In order to mitigate this
problem, a given text categorization is decomposed to binary
classification problems in previous literatures [10] [11].

The idea of this research is to propose an alternative strategy
of encoding documents, in order to address the two problems. In
the proposed strategy, documents are encoded into string vectors,
and a string vector refers to a finite ordered set of words. When
in a numerical vector, numerical values given as its elements are
replaced by words, it becomes a string vector. The goal of this
research is to address the two problems by representing

documents into string vectors, instead of numerical vectors. An

additional advantage of string vectors is that they are more
transparent than numerical vectors.

In this research, SVM (Support Vector Machine) is adopted
as targets for modification into their adaptable versions to string
vectors. In other words, we propose their modified versions
where string vectors are used as their input vectors, instead of
numerical vectors. A process of computing a semantic similarity
between two string vectors is defined in this research as an
operation on string vectors. Before performing the operation, we
must build a similarity matrix from a corpus. Therefore, the
operation on string vectors is performed, depending strongly on
the similarity matrix.

This article consists of six sections including this section. In
section 2, we will explore previous research on text
categorization and an attempt to address the two problems. In
section 3, we will describe two strategies of encoding
documents for text categorization. In section 4, we will present
architecture of text categorization systems and describe two
versions of SVM. In section 5, we present experimental results
of comparing the two versions of SVM with each other on two
test beds and in section 6, mention the significance of this
research and remaining tasks as the conclusion.

2. Previous Works

In this section, we will explore previous research on text
categorization and a previous attempt to address the two
problems in representing documents into numerical vectors. The
scope of exploring approaches to text categorization is restricted
to machine learning based ones, because they are more flexible
than rule based ones. In this section, four supervised learning
algorithms, NB (Naive Bayes), KNN, SVM, and Back
Propagation, are covered as main approaches to text
categorization. In this section, each of them is described briefly
and previous cases of applying it to text categorization are
mentioned. We will justify why we select SVM as targets for the
modification among the four approaches.

The fist typical approach to text categorization is KNN. KNN
is a supervised learning algorithm where objects are classified
based on target labels of their similar samples. The supervised
learning algorithm has its two properties. Its first property is that
it does not learn any training example until an unseen example is
given; it is called lazy based learning algorithm [7]. Its second
property is that it classified unseen objects based on target labels
of their similar samples; it is called example based learning
algorithm [7].

Among the four supervised learning algorithms, KNN was
applied earliest to text categorization. In 1992, Massand et al
applied it for classifying news articles [6]. The KNN has been
fixed as the traditional machine learning based approach. In

Modified Version of SVM for Text Categorization

successive literatures, the KNN has been compared with other
approaches [4] [10] [11] [12]. In 1999, Yang recommended the
KNN as a good approach when she compared more than ten
approaches [12].

Another popular approach to text categorization is NB. NB
refers to a variant of Bayes classifier where each example is
classified based on posterior probabilities of categories given it.
In this approach, elements of an object are independent of each
other and a probability of the object given a category is the
product of probabilities of its elements given a category. The
learning process of NB indicates is to define probabilities of all
values of elements given categories using training examples.
The NB leamns training examples in advance, differently from
the KNN.

Among the four approaches, NB has been most popularly
applied for text categorization. In 1997, Mitchell mentioned NB
is a typical approach to text categorization in his text book [7].
In 1999, Mladenic et al evaluated feature selection methods
under the application of NB to text categorization [8]. In 2000,
Androutsopoulos et al adopted NB as the approach to spam mail
filtering [1]. Note that spam mail filtering is a practical and high
demanding instance of text categorization.

The back propagation may be considered as another approach
to text categorization. Among supervised neural networks, the
back propagation is most popular model for classifications and
regressions. It consists of three layers: the input layer, the
hidden layer, and the output layer. In this neural network model,
its weights are initialized randomly and output values are
computed in a forward direction from the input layer to the
output layer. The weights are updated to minimize errors
between computed output values and target ones of training
examples in a backward direction, from the output layer to the
input layer.

In 1995, Winer applied the back propagation to text
categorization in his master thesis [12]. He validated that the
back propagation classifies unseen documents more accurately
than KNN and NB on the standard test bed: Reuter 21578. In
2002, Ruiz et al proposed multiple back propagations in a
hierarchical structure for text categorization [9]. They validated
that the hierarchical structure of combining multiple back
propagation is desirable than the flat one. However, the back
propagation classifies documents more accurately, but it costs
very much time for training it.

SVM is considered as a recent popular approach to text
categorization. In the approach, unseen objects are classified by
a linear combination of kernels of training examples. A kernel
refers to a criterion of similarity between a training example and
an unseen object. Depending on definition of kernels, SVM may
be implemented as its various versions. Since SVM classifies
unseen objects based on kernels of training examples, it is called
kernel based learning [4].

53

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 1, March 2008

In 1998, Joachim applied SVM to text categorization as a
typical approach [5]. He proved that SVM is a suitable approach
to text categorization by comparing it with NB and KNN. In
2000, Cristiani et al mentioned that SVM is a typical approach
to text categorization in their text book. The reason that SVM
becomes a recent popular approach to text categorization is that
it is tolerable to huge dimension of numerical vectors which is
the first problem from represent documents into numerical
vectors.

In 2002, Lodhi et al attempted to solve the two problems in
representing documents into numerical vectors by proposing the
string kernel for SVM [5]. The string kernel proposed by them is
the operation on full texts which computes a syntactic similarity
between two full texts. Its additional advantage is that it is
applicable independent of natural languages. Its disadvantage is
that it takes too much time for perform the operation because of
its very high complexity. Furthermore, their proposed version of
SVM where a string kernel was used failed to be better than the
traditional version of SVM.

SVM is adopted as the target for its modification in this
research. The reason is that SVM is tolerable to huge dimension
of numerical vectors and it becomes a popular approach,
recently. SVM is modified into its adaptable version to string
vectors by defining a kernel function of string vectors. The
operation where a semantic similarity between two string
vectors is computed is used as the kemnel function in the
modified version. As mentioned previously, depending on how
to define a kernel function, SVM is implemented in its various
versions.

3. Strategies of Encoding Documents

This section concerns two strategies of encoding documents
for tasks of text mining, such as text categorization and text
clustering. In the reality, documents given as raw data can not be
processed directly by a computer. In this section, we will
describe two strategies of encoding documents for processing
them by a computer. One is the traditional strategy where
documents are encoded into numerical vectors, and is described
in section 3.1. The other is the proposed one where they are
encoded into string vectors, and is described in section 3.2.

3.1. Traditional Strategy

This subsection concerns the traditional strategy of encoding
documents for processing them. In this strategy, documents are
encoded into numerical vectors for text categorization or text
clustering. The process of doing that is described in detail in this
subsection. For first, we will describe the process of extracting
words as feature candidates from a corpus and the process of
selecting some of them as features. For second, we will describe

54

the process of assigning values corresponding to the features as
final step of generating numerical vectors.

As the first stage of encoding documents into numerical
vectors, feature candidates are extracted from a corpus. A
collection of documents is given as a corpus in advancel. The
corpus is given as input of this stage. A list of words and their
frequencies is generated as its output. This stage consists of
three steps, as illustrated in figure 1.

As illustrated in figure 1, a document or documents may be
given as input of this stage. If more than two documents are
given as the input, their full texts are concatenated into a full
text. The integrated full text becomes the target for the
tokenization. The full text is tokenized into tokens by a white
space or a punctuation mark. Therefore, the output of this step is
a list of tokens.

The next step to the concatenation & tokenization is the
stemming & exception handling, as illustrated in figure 1. In this
step, each token is converted into its root form. Before doing
that, rules of stemming and exception handling are saved into a
file. When the program encoding documents is activated, the
rules are loaded into memory and the corresponding rules are
applied to each token. The output of this step is a list of tokens
converted into their root forms.

The last step of extracting feature candidates from a corpus is
to remove stop words as illustrated in figure 1. Here, stop words
are defined as words which function only grammatically without
their relevance to content of their document; articles (a an, or
the), prepositions (in, on, into, or at), pronoun (he, she, I, or me),
and conjunctions (and, or, but, and so on) belong to this kind of
words. It is necessary to remove this kind of words for more
efficient processing. After removing stop words, frequencies of
remaining words are counted. Therefore, a list of the remaining
words and their frequencies is generated as the final output from
the process illustrated in figure 1.

Since too many feature candidates are usually extracted from
a corpus, some of them should be selected as features. Many
schemes for selecting some of them were already proposed
[8][10]. In this research, frequencies of words are set as the
criteria for selecting features for simplicity. Words with their
highest frequencies are selected as features2. Other schemes for
selecting features will be used in future researches.

! In text categorization, sample labeled documents or separated
collection of documents may be given as a corpus. Here, we set
sample labeled documents as the corpus. However, unlabeled
documents may be used as a corpus for extracting feature
candidates.

? Stop words have their high frequencies in a given document or a
collection of documents. However, since stop words were already
removed in the process of extracting feature candidates, the kind of
words never selected as features.

Document
or
Documents

ﬁ ™
! Concatenation & Tokenization
N . J

) Stemming and h
Exception Handling 7J

, x .
[Removal of Stop Words J

List of Words and
their Frequencies

Figure 1. The Process of Extracting Feature Candidates

Once features are selected as attributes of numerical vectors,
values should be assigned to the features. There are the three
ways for assigning values to features for encoding documents
into numerical vectors. For first, to each feature, a binary value
is set, indicating its absence or presence; a document encoded
into a binary vector in this way. For second, to each feature, its
frequency in the document is set as its value; a numerical vector

representing a document has integers as its elements, in this way.

For third, we can set values of features as weights of words
computed by equation (1),

weight,(w,) = f(w, Jlog, D ~log, df (w,) +1) (1)

where weight,(w,) indicates a weight of the word, w, , which
indicates its content based importance in the document, i,
#,(w,) indicates the frequency of the word, w, in the
document, i, df(w,) is the number of documents including
the word, w, , and D is the total number of documents in a

given corpus.

3.2. Proposed Strategy

This subsection concerns the proposed strategy of encoding
documents. In this strategy, documents are encoded into string
vectors, instead of numerical vectors. Depending on a given
application area, it may be complicated or difficult that raw data
are represented into numerical vectors for using machine
learning algorithms. Especially in text mining, it is unnatural to
encode documents into numerical vectors. The goal of this
strategy is to address the two problems of the traditional
strategy: huge dimensionality and sparse distribution.

A string vector is defined as a finite ordered set of words. If in
a numerical vector, numerical values given as its elements are
replaced by words, it becomes a string vector. A d -
dimensional string vector is notated by [wl Wy yerens wd] . Although

Modified Version of SVM for Text Categorization

two string vectors have their identical elements, if their elements
are in different order, they are different string vectors from each
other. Therefore, a string vector should be distinguished from a
bag of words based on this fact.

Properties of words may be set as features of string vectors.
Features of string vectors are defined in one or combined one of
three views. In the first views, features are defined based on
posting information of words: a random word in the first
sentence, a random word in the last sentence, and a random
word in the first paragraph. In the second view, they are defined
based on linguistic properties of words, such as first noun, first
verb, last noun, and last verb. In the third view, they are defined
based on their frequencies, such as the most frequent word, the
second most frequent word, and the third most frequent word,
and so on.

In this research, the third way of defining features of string
vectors is adopted; a strong vector consists of words in the
descending order of their frequencies. The reason of defining
features of string vectors so is to implement the encoder easily
and simply. Figure 2 illustrates the process of encoding
documents into string vectors. A document is given as the input.
The process generates a string vector as its output.

The process of encoding a document into a string vector
consists of the three steps, as illustrated in figure 2. The first
step, indexing, was already explained in detail in section 3.1 and
illustrated in figure 1. In the second step, the most frequent
words are selected as clements with their fixed number; the
number indicates the dimension of string vectors given as a
parameter. The selected words are sorted in the descending
order of their frequencies and they are generated as a string
vector.

Document

l

Indexing

A

Selecting

Sorting

l

String Vector

Figure 2. The Process of Encoding Documents into String
Vectors

55

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 1, March 2008

In order to define an operation on string vectors for the
modified version of SVM, a similarity matrix should be built
from a corpus as follows.

Sit S Siv
Su Sw Sin
Sy Saa Syn

A similarity matrix indicates semantic similarities of all
possible pairs of words included in a corpus as a squire matrix.
Each element in the matrix means a semantic similarity between
two words corresponding to a column and a row. The semantic
similarity is computed by equation (2),

) 24O
df (w)+df (w))

where s, is a semantic similarity between the two words, w;

s, = ss(wi,wj

(2)

and w,, df(w,) isanumber of documents including the word
in the corpus, w;, and df (w;,w,) is a number of documents

including both words, w, and w, . Equation (2) implies that a

semantic similarity between two words is determined based on
their collocations within a document.

The similarity matrix defined as a basis for the operation on
string vectors has two properties. The first property is that the
similarity matrix has 1.0 in its diagonal elements.

Property1l. 5,=1.0 (1<i<N)

Since two words at position, i are a word and itself, the
column and the row are identical to each other and the
similarity as computed with equation (2) is 1.0. Therefore the
similarity matrix’s its diagonal elements are 1.0.
<Proof>

ss(w,w)= 2df(w,w) _ 2df(w,) -1.0
P df)+ df () 2df(w)

The second property is that the similarity matrix is a
symmetry matrix by commutative law in equation (2).
Property 2. s, =5,(1<i,j<N)

Since the operation of computing the similarity of two words,
wand w, using equation (2) is commutative, the similarity
matrix is symmetric.
<Proof>

2w w) 2w, w)
dfw)+df (w;) df(w)+df (w)

sy =ss(w,.,wj)= =ss(w,,w,.)=sj,.
The operation on string vectors involved in the modified
version of SVM is defined based on the similarity matrix. The
operation is the process of computing a semantic similarity
between two string vectors. The operation is defined by equation

3.

56

s, =[wi1,wi2,...,wid:|,sj = [wjl,wjz,...,wjd]

d
3)
Sim(siasj)zézss(wik’wjk))
k=1

In the proposed version of SVM, it is used as a kernel
function of string vectors.

4. Text Categorization Systems

This section concerns architecture of text categorization
systems and the modified version of SVM. The two approaches
involve trainer and classifier as the engine in the text
categorization system. The reason of adopting SVM is that they
are modified into their adaptable versions to string vectors easily
and simply. If the operation is used as a kernel function on string
vector, SVM can be modified so.

Figure 3 illustrates the architecture of text categorization
systems consisting of encoder, trainer, and classifiers as their
modules. The encoder given as the interface to input data maps
documents into numerical vectors or string vectors; the
strategies of implementing it were described in detail in section
3. The trainer builds classification capacity using training
documents and provides it for the classifier. The classifier
classifies unseen documents using the classification capacity
given as classification rules or equations. SVM is used as a
scheme for implementing the two modules in this research and
both of them are described in two subsection.

Unseen
Documents

Sample
Documents

- Encoser

Trainer | “Claks'siﬁier‘ ' ——p-Categories

" |__Classificaton__ &

Capacity
Figure 3. Architecture of Text Categorization Systems

4.1. Support Vector Machine

This subsection concerns a brief description of two versions
of SVM. Recently, SVM becomes a very popular approach to
classification problems including text categorization. SVM is
applied to not only text categorization but also any other
application areas such as protein classifications and image
classifications. SVM is a supervised leamning algorithm where
objects are classified by a linear combination of kernels of
training examples. SVM is regarded as a theoretically and

practically sound classification algorithm [2].

In the primitive version of SVM, an unseen example, X is
classified by a linear combination of its inner products with
training examples, as expressed in equation (6),

-1 Za,.(x~xi)+b<0

f(x): ,,,i:l (4)
1 Yo (x-x)+b20

i=1

where x, indicates a training example. In equation (6), «,

corresponding to the training example, x,, is a Lagrange
multiplier. The learning process of SVM is to optimize the
Lagrange multipliers to reduce error and maximize the margin,
in classifying training examples. The function expressed in
equation (6) generates -1 indicating the negative class and 1
indicating the positive class; SVM is used as a binary classifier.
Optimized Lagrange multipliers are given as non-zeros or zeros;
training examples with their non-zero corresponding Lagrange
multipliers are called support vectors [2].

If a distribution of training examples is not linearly separable,
they are mapped into another space where their distribution is
linearly separable. In the general version of SVM, the inner
product of two mapped examples, F(x) and F(x,) , is
computed. Note that an inner product of two vectors in any
space is absolutely given as a scalar value. As expressed in
equation (7), the inner product of two mapped vectors is
computed without mapping them explicitly using a kernel
function.

F(x)-F(x)=K(xx,) (5)

Therefore, in the general version of SVM, the classification
function is given as equation (8).

-1 Y aK(x-x)+b<0

f(x)= ,ni:l (6)
1 ZaiK(x~xi)+b20

i=l

The trainer implemented with SVM learns encoded sample
documents in advance. Its learning process is the optimization of
Lagrange multipliers, as mentioned above. In this research,
SMO (Sequential Minimal Optimization) algorithm is adopted
as the approach to optimization, because of its popularity. It is
skipped in this article, and it is explained in detail in the
literature [4]. The trainer generates the optimized Lagrange
multipliers as its output.

The classifier implemented with SVM takes the optimized
Lagrange multipliers and encoded training examples from the
trainer as its input. Note that a SVM is for a binary
classification; if the SVM is applied to text categorization, the
task should be decomposed into binary classification tasks as

Modified Version of SVM for Text Categorization

many as predefined categories. Each SVM given as a binary
classifier is assigned to each category; it determines whether an
encoded unseen document belongs to the corresponding
category or not. Training documents are labeled with the
positive class indicating ‘belonging’ or the negative class
indicating ‘not belonging’. In this research, text categorization
system implemented with SVM is applied category by category.

The proposed version of SVM uses a kernel function of string
vectors, not of numerical vectors. The operation expressed in
equation (3) is used as a kernel function for the proposed version
of SVM. The kemel function of string vectors should be
distinguished from the string kemnel proposed by Lodhi et al in
2002. In the Lodhi et al’s work, the string kernel is the kernel
function of two full texts given as raw data. In this research, the
version of SVM is modified into the adaptable one to string
vectors by using a kernel function of them.

Note that SVM is a kernel based learning algorithm [4]. In
this class of machine learning algorithms, a kernel refers to a
boundary of influences of training examples on classification of
unseen objects. Kernel based learning is defined as the paradigm
of machine leamning where classification rules or equations are
defined based on the boundaries. In both versions of SVM, an
inner product of two numerical vectors and a semantic similarity
of two string vectors are given as kernels. Once SVM is
modified so, it is expected to modify other kernel based learning
algorithms.

5. Experiment Results

This section concerns experiments where two strategies of
encoding documents for text categorization. Two collections of
news articles, NewsPage.com and Reuter21578, were used as
the test beds. In these experiments, documents are encoded into
numerical vectors with high dimensions in the traditional
strategy, while they are encoded into string vectors with low
dimensions in the proposed one. We used SVM to text
categorization. The goal of these experiments is to observe
whether the proposed versions of both machine learning
algorithms are better than or comparable to their traditional ones
with smaller sizes of inputs.

5.1. NewsPage.com

This set of experiments concerns comparisons of two
strategies of encoding documents on the first test bed,
NewsPage.com. The test bed, NewsPage.com, consists of five
categories and 1,200 news articles. We use SVM as a typical
approache to text categorization in this set of experiments, as
mentioned in section 2. The similarity matrix is built from a
collection of training documents given as a corpus, in order to
perform the operation on string vectors. The significance of this

57

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 1, March 2008

set of experiments is the first step of testing which of the two
strategies of encoding documents is better.

The first test set for evaluating the two strategies of encoding
documents is NewsPage.com. This test bed consists of 1,200
news articles in plain ASCII text files built by copying and
pasting news articles in the web site, www.newspage.com.
Table 1 shows the predefined categories, the number of
documents of each category, and the partition of the test bed into
training set and test set. As shown in table 1, the ratio of training
set to test set is set as 7:3. Here, the test bed was named after the
web site.

Table 1. Training Set and Test Set of Newspage.com
Category Name Training Set Test Set #Document

Business 280 120 400
Health 140 60 200

Law 70 30 100
Internet 210 90 300
Sports 140 60 200

Total 840 360 1200

Table 2 illustrates configurations of parameters of the two
approaches, dimensions, and similarity matrix for this set of
experiments. From a given training set, words with highest
frequency are selected as features indicating attributes of
numerical vectors. In the traditional strategy, documents are
encoded into numerical vectors with 100, 250, and 500
dimensions as large input sizes, and in the proposed strategy,
they are encoded into string vectors with 10, 25, and 50
dimensions, as small input sizes. We set the size of similarity
matrix to 350 X 350, as illustrated in table 2, because of
constraints of time and system resources.

Table 2. Configurations for this Set of Experiments

Support Vector Machine #iterations = 200
ICl=4
Dimensions Numerical Vectors: 100, 250, and 500

String Vectors: 10, 25, and 50
350 X 350

Size of Similarity Matrix

In figure 4 and 5, the results of comparing the two strategies
of encoding documents with each other are presented into bar
graphs. In x-axis of each graph, each group indicates a strategy
of encoding documents, and an individual graph within a group
indicates a dimension of numerical vectors or string vectors. A
given text categorization on this test bed is decomposed into five
binary classifications, and for each category, Fl-measure into
which recall and precision are combined with each other is used
as the evaluation measure. Therefore, y-axis indicates micro-
averaged F1 in the left side and macro-averaged F1 in the right

58

side. Micro-averaged F1 is obtained by computing F1 measure
based on the total number of true positives, classified positives,
and correctly classified positives over the five categories, while
macro-averaged F1 is obtained by averaging five F1 measures of
the five categories.

Figure 4 illustrates the results of comparing the two strategies
of encoding documents in using SVM for text categorization on
this test bed. In the traditional strategy, both measures are
almost same to each other over all dimensions of numerical
vectors. In the proposed strategy, when documents are encoded
into 50 dimensional string vectors, both measures are highest. In
both measures, when documents are encoded into 10 and 25
dimensional string vectors, the proposed strategy is comparable
to the traditional one. In both measures, when documents are
encoded into 50 dimensional string vectors, the proposed
strategy is better than the traditional one by 35%, as illustrated
in figure 5.

0100 vs 10
@250 vs 25
@ 500 vs 50

0100 vs 10
B8 250 vs 25
@ 500 vs 50

NV SV

Figure 4. The Results of Two Strategies of Encoding Documents
in using SVM on NewsPage.com
Microaveraged-F1 Measure (Left) and Macroaveraged-F1
Measure (Right)

5.2. Reuter21578

This section concerns another set of experiments where two
strategies of encoding documents are compared with each other
on another test bed. The test bed used in this set of experiments
is Reuter21578 which has been used very popularly as the
standard test bed for
categorization [10]. Dimensions of numerical vectors and string

evaluating approaches to text

vectors are set identically to those in the previous set of

experiments. SVM is used for this set of experiments with the
identical configurations in the previous set. The goal of this set
of experiments is to evaluate the two strategies of encoding
documents one more time for more confirmative judgments.

The test bed used in this set of experiments is a collection of
news articles called Retuer21578. Although this test bed
contains more than 100 categories, we selected only ten most
frequent categories for running this set of experiments3. The
‘text categorization on this test bed is decomposed into ten binary
classifications inconsistently with the number of predefined
categories. Table 3 illustrates the partition of this test bed into
training and test set. The size of training set is different to each
category, as illustrated in table 3.

Table 3. Partition of Training Set and Test Set in Reuter21578

Category Name Training Set Test Set #Document
Acq 1452 672 2124
Com 152 57 209
Crude 328 203 531
Eam 2536 954 3490
Grain 361 162 523
Interest 296 135 431
Money-Fx 553 246 799
Ship 176 87 263
Trade 335 160 495
Wheat 173 76 249

Figure 5 illustrates the results of comparing the two strategies
of encoding documents in using SVM for text categorization. In
the traditional strategy, when documents are encoded into 100
dimensional numerical vectors, micro-averaged F1 is highest,
and when documents are encoded into 250 dimensional vectors,
macro-averaged F1 is highest. In the proposed strategy, when
documents are encoded into 50 dimensional string vectors, both
micro-averaged F1 and macro-averaged F1 are highest. As
illustrated in figure 4, when SVM is used as an approach to text
categorization, the proposed strategy of encoding documents is
better than the traditional strategy. In using SVM, the proposed
strategy satisfies our expectation sufficiently.

5.3. Final Discussion

Let’s consider why the proposed strategy was effective only
in using SVM for text categorization. The cause of the
effectiveness is that string vectors are free from sparse
distributions which happens frequently in numerical vectors
representing documents. SVM uses the operation on numerical

3 In the rest, cach category has a very sparse number of news
articles.

Modified Version of SVM for Text Categorization

vectors, inner product between two numerical vectors. If
numerical vectors given as training and test examples are sparse,
the operation generates zero values very frequently. The fact
that the sparse distribution of numerical vectors degrades the
performance of text categorization came true in using SVM
under the traditional strategy of encoding documents.

0100 vs 10
8250 vs 25
B 500 vs 50

ag100vs 10
B 250 vs 25
B 500 vs 50

NV ‘ SV

Figure 5. The Results of Two Strategies of Encoding Documents
in using SVM on Reuter21578
Microaveraged-F1 Measure (Left) and Macroaveraged-F1
Measure (Right)

According to the results in these experiments, we can judge
that the information loss caused by using the small sized
similarity matrix should be addressed, in order to improve the
proposed strategy. The solution is to use inverted indices of
words for performing operations on string vectors, instead of a
similarity matrix. We ‘can compute a semantic similarity
between two string vectors directly from the inverted indices,
without building any similarity matrix. Note that there is the
trade-off between a similarity matrix and the inverted indices. If
the inverted indices are used for performing operations on string
vectors, the reliability is expected to be improved, but it costs
more time for performing the operations.

6. Conclusion

In this research, we proposed an alternative strategy of
encoding documents, in order to address the two problems from

59

International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 1, March 2008

the traditional strategy: huge dimensionality and sparse
distribution. The two machine learning algorithms, SVM, were
modified into their adaptable versions to string vectors. The
process of computing a semantic similarity between two string
vectors is defined as an operation on string vectors. In the
modified version of SVM, it is used as a kernel function of two
string vectors.

Once a similarity matrix is built from a corpus, it may be used
continually while the domain of documents is not changed.
However, note that it costs very much time and system resources
for building it. Therefore, as mentioned in section 5, the size of
the similarity matrix is restricted to 350 by 350. The restriction
leaded to a great information loss. This is the reason that the
proposed versions were not better than the traditional versions,
as presented in section 5.

Other machine learning algorithms such as Naive Bayes and
back propagation may be considered to be modified into their
adaptable versions to string vectors. SVM is modified easily
once the process of computing a semantic similarity between
two vectors is defined as the operation. The operation may be
insufficient for modifying other machine leamning algorithms.
For example, it requires the definition of a string vector which is
representative of string vectors corresponding to a mean vector
in numerical vectors for modifying a k-means algorithm into the
adaptable version. Various operations on string vectors should
be defined in a future research for modifying other machine
learning algorithms.

7. Literatures

[1] Androutsopoulos, K. Koutsias, K. V. Chandrinos, and C.
D. Spyropoulos, “An Experimental Comparison of Naive
Bayes and Keyword-based Anti-spam Filtering with
personal email message”, The Proceedings of 23% ACM
SIGIR, pp160-167, 2000.

[2] M. Hearst, “Support Vector Machines”, IEEE Intelligent
Systems, Vol 13, No 4, ppl18-28, 1998.

[3] P. Jackson, and 1. Mouliner, Natural Language Processing
for Online Applications: Text Retrieval, Extraction and
Categorization, John Benjamins Publishing Company, 2002.

60

[4] T. Joachims, “Text Categorization with Support Vector
Machines: Learning with many Relevant Features”, The
Proceedings of 10" European Conference on Machine
Learning, pp143-151, 1998.

[5]1 H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and
C. Watkins, Text Classification with String Kernels,
Journal of Machine Learning Research, Vol 2, No 2,
pp419-444, 2002.

[6] B. Massand, G. Linoff, and D. Waltz, “Classifying News
Stories using Memory based Reasoning”, The Proceedings
of 15% ACM International Conference on Research and
Development in Information Retrieval, 1992, pp59-65, 1992.

[71 Mitchell, T. M., Machine Learning, McGraw-Hill, 1997.

[8] D. Mladenic, and M. Grobelink, “Feature Selection for
unbalanced class distribution and Naive Bayes”, The
Proceedings of International Conference on Machine
Learning, pp256-267, 1999.

[9] M. E. Ruiz,
Categorization Using Neural Networks”,
Retrieval, Vol 5, No 1, 2002, pp87-118, 2002.

[10]F. Sebastiani, “Machine Learning in Automated Text
Categorization”, ACM Computing Survey, Vol 34, No 1,
ppl-47, 2002.

[11]E. D. Wiener, “A Neural Network Approach to Topic
Spotting in Text”, The Thesis of Master of University of
Colorado, 1995.

[12]Y. Yang, “An evaluation of statistical approaches to text

and P. Srinivasan, “Hierarchical Text

Information

categorization”, Information Retrieval, Vol 1, No 1-2,
pp67-88, 1999,

Taeho Jo

Taeho Jo received PhD degree from
University of Ottawa in 2006. Currently,
he works for Inha University as a professor.
He has submitted and published more than
100 research papers to journals and
proceedings since 1996. Previously he has

ever worked for industrial organizations: Samsung, ETRI,
KISTI, and KAIST Institute for IT Convergence. His research
interests are text mining, neural networks, machine learning, and
information retrieval.

