DOI QR코드

DOI QR Code

On Mapping Growing Degree-Days (GDD) from Monthly Digital Climatic Surfaces for South Korea

월별 전자기후도를 이용한 생장도일 분포도 제작에 관하여

  • Kim, Jin-Hee (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Yun, Jin-I. (Department of Ecosystem Engineering, Kyung Hee University)
  • 김진희 (경희대학교 생태시스템공학과) ;
  • 윤진일 (경희대학교 생태시스템공학과)
  • Published : 2008.03.31

Abstract

The concept of growing degree-days (GDD) is widely accepted as a tool to relate plant growth, development, and maturity to temperature. Information on GDD can be used to predict the yield and quality of several crops, flowering date of fruit trees, and insect activity related to agriculture and forestry. When GDD is expressed on a spatial basis, it helps identify the limits of geographical areas suitable for production of various crops and to evaluate areas agriculturally suitable for new or nonnative plants. The national digital climate maps (NDCM, the fine resolution, gridded climate data for climatological normal years) are not provided on a daily basis but on a monthly basis, prohibiting GDD calculation. We applied a widely used GDD estimation method based on monthly data to a part of the NDCM (for Hapcheon County) to produce the spatial GDD data for each month with three different base temperatures (0, 5, and $10^{\circ}C$). Synthetically generated daily temperatures from the NCDM were used to calculate GDD over the same area and the deviations were calculated for each month. The monthly-data based GDD was close to the reference GDD using daily data only for the case of base temperature $0^{\circ}C$. There was a consistent overestimation in GDD with other base temperatures. Hence, we estimated spatial GDD with base temperature $0^{\circ}C$ over the entire nation for the current (1971-2000, observed) and three future (2011-2040, 2041-2070, and 2071-2100, predicted) climatological normal years. Our estimation indicates that the annual GDD in Korea may increase by 38% in 2071-2100 compared with that in 1971-2000.

생장도일을 품종별로 계산해 두면 농작물의 지역 적응여부를 판단하는데 유용하며, 넓은 지역에 적용하여 분포도를 작성하면 수목이나 작물의 기후학적 적응도 판단의 기준으로 활용할 수 있어 농업기후지대 구분에 이용된다. 이미 제작된 30m 해상도 전자기후도를 이용하여 생장도일(GDD) 분포도를 작성할 수 있다면 현재의 기후조건에서 적지적작, 적지적수를 위한 토대를 마련할 수 있을 뿐 아니라 기후변화에 따른 향후 우리나라 농림업 분야의 적응방안을 도출하는 데 큰 도움이 될 것이다. 전자기후도 형태로 공급되는 기후학적 평년의 월별 기온자료에 의해 식물의 생장도일 분포도를 작성할 수 있는지를 경남 합천지역을 대상으로 검토한 결과, 생육임계온도 $0^{\circ}C$에서 계산된 GDD만이 일별 기온자료에 의해 계산된 GDD와 그 값이 유사했으며, 생육임계온도가 $5^{\circ}C$$10^{\circ}C$로 높아질수록 오차가 급격하게 증가하여 실용성이 떨어지는 것으로 나타났다. 실용성이 인정되는 기준온도 $0^{\circ}C$에서 1971-2000년 평년의 남한 전역 GDD를 30m 해상도로 추정하고, 이것을 IPCC SRES A2 시나리오(2011-2040, 2041-2700, 2071-2100년)에서 예상되는 미래 GDD 분포와 비교한 결과 100년 후에는 현재의 GDD보다 약 38% 증가할 것이며 그 증가폭은 평야지보다는 고랭지에서 현저하게 나타날 것으로 예상되었다.

Keywords

References

  1. Booth, T. H., 1990: Mapping regions climatically suitable for particular tree species at a global scale. Forest Ecology and Management 36, 47-60 https://doi.org/10.1016/0378-1127(90)90063-H
  2. Coops, N., A. Loughhead, and P. Ryan, 2001: Development of daily spatial heat unit mapping from monthly climatic surfaces for the Australian continent. International Journal of Geographical Information Science 15, 345-361 https://doi.org/10.1080/13658810010011401
  3. Edey, S. N., 1977: Growing Degree-Days and Crop Production in Canada. Agriculture Canada Publication 1635, 63pp
  4. Hutchinson, M. F., 1986: Methods of generating weather sequences. Agricultural Environments, A. H. Bunting (Ed.), C. A. B. International, Wallingford, 147-157
  5. Mackey, B. G., D. W. McKenny, Y. Yang, J. P. McMahon, and M. F. Hutchinson, 1996: Site regions revisited: a climatic analysis of Hill's site regions for the province of Ontario using a parametric method. Canadian Journal of Forest Research 26, 333-354 https://doi.org/10.1139/x26-038
  6. Neild, R. E., M. W. Seeley, and N. H. Richman, 1978: The computation of agriculturally oriented normals from monthly climate summaries. Agricultural and Forest Meteorology 19, 181-187 https://doi.org/10.1016/0002-1571(78)90010-9
  7. Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology (Japan) 48, 379-383. (In Japanese with English abstract) https://doi.org/10.2480/agrmet.48.379
  8. Thom, H. C. S., 1954: The relationship between heating degree-days and temperature. Monthly Weather Review 82(9), 1-6 https://doi.org/10.1175/1520-0493(1954)082<0001:TRRBHD>2.0.CO;2
  9. Yun, J. I., 2006: Climate change impact on the flowering season of Japanese cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8, 68-76. (in Korean with English abstract)
  10. Yun, J. I., 2007: Applications of "High Definition Digital Climate Maps" in restructuring of Korean agriculture. Korean Journal of Agricultural and Forest Meteorology 9, 1-16. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.1.001

Cited by

  1. Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea vol.48, pp.3, 2012, https://doi.org/10.1007/s13143-012-0022-6
  2. Distribution of Midday Air Temperature and the Solar Irradiance Over Sloping Surfaces under Cloudless Condition vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.291
  3. Feasibility of Stochastic Weather Data as an Input to Plant Phenology Models vol.14, pp.1, 2012, https://doi.org/10.5532/KJAFM.2012.14.1.011
  4. Effect of Yearly Changes in Growing Degree Days on the Potential Distribution and Growth of Quercus mongolica in Korea vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.109
  5. Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.108
  6. Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5 vol.50, pp.S1, 2014, https://doi.org/10.1007/s13143-014-0050-5
  7. Growth Modeling of Chinese Cabbage in an Alpine Area vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.309